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Preface

The first time China sent a team to IMO was in 1985. At the
time, two students were sent to take part in the 26th IMO.
Since 1986, China always sent a team of 6 students to IMO
except in 1998 when it was held in Taiwan. So far up to 2008,
China has achieved the number one ranking in team effort 14
times. A great majority of students received gold medals. The
fact that China obtained such encouraging result is due to, on
one hand, Chinese students’ hard working and perseverance,
and on the other hand, the effort of teachers in schools and the
training offered by national coaches. As we believe, it is also a
result of the educational system in China, in particular, the
emphasis on training of basic skills in science education.

The materials of this book come from a series of two books
(in Chinese) on Forward to IMO: a collection of mathematical
Olympiad problems (2007 —2008). It is a collection of problems
and solutions of the major mathematical competitions in China.
It provides a glimpse of how the China national team is selected
and formed. First, there is the China Mathematical
Competition, a national event. It is held on the second Sunday
of October every year. Through the competition, about 150
students are selected to join the China Mathematical Olympiad

(commonly known as the winter camp), or in short CMO, in

vii
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January of the second year. CMO lasts for five days. Both the
type and the difficulty of the problems match those of IMO.
Similarly, the student contestants are requested to solve three
problems every day in 4.5 hours. From CMO about 20 to 30
students are selected to form a national training team. The
training takes place for two weeks in the month of March every
year. After six to eight tests, plus two qualifying examinations,
six students are finally selected to form the national team,
taking part in IMO in July of that year.

In view of the differences in education, culture and
economy of West China in comparison with East China,
mathematical competitions in West China did not develop as
fast as in the east. In order to promote the activity of
mathematical competition, and to upgrade the level of
mathematical competition, starting from 2001 China
Mathematical Olympiad Committee conducted the China
Western Mathematical Olympiad. The top two winners will be
admitted to the national training team. Through the China
Western Mathematical Olympiad, there have been two students
entering the national team and receiving gold medals for their
performance at IMO.

So far since 1986, the China team has never had a female
student. In order to encourage more female students
participating in mathematical competitions, starting from 2002
China Mathematical Olympiad Committee conducted the China
Girls’ mathematical Olympiad. Again, the top two winners will
be admitted directly into the national training team. In 2007,
the first girl who was winner of China Girls’ mathematical
Olympiad was selected to enter the 2008 China national team
and won a gold medal of the 49th IMO.



Preface i

The authors of this book are coaches of the MO Chinese
national team. They are Xiong Bin, Li Shenghong, Leng
Gangsong, Wu Jianping, Chen Yonggao, Wang Jianwei, Li
Weigu, Yu Hongbing, Zhu Huawei, Feng Zhigang, Liu
Shixiong, Zhang Sihu, and Zheng Chongyi. Those who took
part in the translation work are Xiong Bin, Feng Zhigang,
Wang Shanping, Zheng Chongyi, and Zhao Yingting. We are
grateful to Qiu Zhonghu, Wang Jie, Wu Jianping. and Pan
Chengbiao for their guidance and assistance to authors. We are
grateful to Ni Ming of East China Normal University Press.
Their effort has helped make our job easier. We are also
grateful to Zhang Ji of World Scientific Publishing for her hard

work leading to the final publication of the book.

Authors
October 2008



This page intentionally left blank



Introduction

Early days

The International Mathematical Olympiad (IMO), founded in
1959, is one of the most competitive and highly intellectual
activities in the world for high school students.

Even before IMO, there were already many countries
which had mathematics competition. They were mainly the
countries in Eastern Europe and in Asia. In addition to the
popularization of mathematics and the convergence in
educational systems among different countries, the success of
mathematical competitions at the national level provided a
foundation for the setting-up of IMO. The countries that
asserted great influence are Hungary, the former Soviet Union
and the United States. Here is a brief review of the IMO and
mathematical competitions in China.

In 1894, the Department of Education in Hungary passed a
motion and decided to conduct a mathematical competition for
the secondary schools. The well-known scientist, J. von
Etovés , was the Minister of Education at that time. His support
in the event had made it a success and thus it was well
publicized. In addition, the success of his son, R. von Etévos,
who was also a physicist, in proving the principle of equivalence

of the general theory of relativity by A. Einstein through
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experiment, had brought Hungary to the world stage in science.
Thereafter, the prize for the mathematical competition in
Hungary was named “Etovos prize”. This was the first formally
organized mathematical competition in the world. In what
follows, Hungary had indeed produced a lot of well-known
scientists including L. Fejér, G. Szegé, T. Radé, A. Haar
and M. Riesz (in real analysis), D. Konig (in combinatorics),
T. von Karman (in aerodynamics), and J. C. Harsanyi (in
game theory), who had also won the Nobel Prize for Economics
in 1994. They all were the winners of Hungary mathematical
competition. The top scientific genius of Hungary, J. von
Neumann , was one of the leading mathematicians in the 20th
century. Neumann was overseas while the competition took
place. Later he did it himself and it took him half an hour to
complete. Another mathematician worth mentioning is the
highly productive number theorist P. Erdos. He was a pupil of
Fejér and also a winner of the Wolf Prize. Erdés was very
passionate about mathematical competitions and setting
competition questions. His contribution to discrete mathematics
was unique and greatly significant. The rapid progress and
development of discrete mathematics over the subsequent
decades had indirectly influenced the types of questions set in
IMO. An internationally recognized prize named after Erdos
was to honour those who had contributed to the education of
mathematical competitions. Professor Qiu Zonghu from China
had won the prize in 1993.

In 1934, a famous mathematician B. Delone conducted a
mathematical competition for high school students in Leningrad
(now St. Petersburg) in formal USSR. In 1935, Moscow also

started organizing such event. Other than being interrupted
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during the World War [I , these events had been carried on until
today. As for the Russian Mathematical Competition (later
renamed as the Soviet Mathematical Competition), it was not
started until 1961. Thus, the former Soviet Union and Russia
became the leading powers of Mathematical Olympiad. A lot of
grandmasters in mathematics including the great A. N.
Kolmogorov were all very enthusiastic about the mathematical
competition. They would personally involve in setting the
questions for the competition. The former Soviet Union even
called it the Mathematical Olympiad, believing that
mathematics is the “gymnastics of thinking”. These points of
view gave a great impact on the educational community. The
winner of the Fields Medal in 1998, M. Kontsevich, was once
the first runner-up of the Russian Mathematical Competition.
G. Kasparov, the international chess grandmaster, was once
the second runner-up. Grigori Perelman, the winner of the
Fields Medal in 2006, who solved the final step of Poincaré’s
Conjecture, was a gold medalist of IMO in 1982.

In the United States of America, due to the active
promotion by the renowned mathematician Birkhoff and his
son, together with G. Pélya, the Putnam mathematics
competition was organized in 1938 for junior undergraduates.
Many of the questions were within the scope of high school
students. The top five contestants of the Putnam mathematical
competition would be entitled to the membership of Putnam.
Many of these were eventually outstanding mathematicians.
There were the famous R. Feynman (winner of the Nobel Prize
for Physics, 1965), K. Wilson (winner of the Nobel Prize for
Physics, 1982), J. Milnor (winner of the Fields Medal, 1962),
D. Mumford (winner of the Fields Medal, 1974), and D.
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Quillen (winner of the Fields Medal, 1978).

Since 1972, in order to prepare for the IMO, the United
States of America Mathematical Olympiad (USAMO) was
organized. The standard of questions posed was very high,
parallel to that of the Winter Camp in China. Prior to this, the
United States had organized American High School
Mathematics Examination ( AHSME) for the high school
students since 1950. This was at the junior level yet the most
popular mathematics competition in America. Originally, it was
planned to select about 100 contestants from AHSME to
participate in USAMO. However, due to the discrepancy in the
level of difficulty between the two competitions and other
restrictions, from 1983 onwards, an intermediate level of
competition, namely, American Invitational Mathematics
Examination ( AIME), was introduced. Henceforth both
AHSME and AIME became internationally well-known. A few
cities in China had participated in the competition and the
results were encouraging.

The members of the national team who were selected from
USAMO would undergo training at the West Point Military
Academy, and would meet the President at the White House
together with their parents. Similarly as in the former Soviet
Union, the Mathematical Olympiad education was widely
recognized in America. The book “How to Solve it” written by
George Polya along with many other titles had been translated
into many different languages. George Polya provided a whole
series of general heuristics for solving problems of all kinds. His
influence in the educational community in China should not be

underestimated.
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International Mathematical Olympiad

In 1956, the East European countries and the Soviet Union took
the initiative to organize the IMO formally. The first
International Mathematical Olympiad (IMO) was held in
Brasov, Romania, in 1959. At the time. there were only seven
participating countries, namely, Romania, Bulgaria, Poland,
Hungary, Czechoslovakia, East Germany and the Soviet
Union. Subsequently, the United States of America, United
Kingdom, France, Germany and also other countries including
those from Asia joined. Today, the IMO had managed to reach
almost all the developed and developing countries. Except in
the year 1980 due to financial difficulties faced by the host
country, Mongolia, there were already 49 Olympiads held and
97 countries participating.

The mathematical topics in the IMO include number
theory, polynomials, functional equations, inequalities, graph
theory, complex numbers, combinatorics, geometry and game
theory. These areas had provided guidance for setting questions
for the competitions. Other than the first few Olympiads, each
IMO is normally held in mid-July every year and the test paper
consists of 6 questions in all. The actual competition lasts for 2
days for a total of 9 hours where participants are required to
complete 3 questions each day. Each question is 7 marks which
total up to 42 marks. The full score for a team is 252 marks.
About half of the participants will be awarded a medal, where
1/12 will be awarded a gold medal. The numbers of gold, silver
and bronze medals awarded are in the ratio of 1:2: 3
approximately. In the case when a participant provides a better
solution than the official answer, a special award is given.

Each participating country will take turn to host the IMO.



i Mathematical Olympiad in China

The cost is borne by the host country. China had successfully
hosted the 31st IMO in Beijing. The event had made a great
impact on the mathematical community in China. According to
the rules and regulations of the IMO, all participating countries
are required to send a delegation consisting of a leader, a
deputy leader and 6 contestants. The problems are contributed
by the participating countries and are later selected carefully by
the host country for submission to the international jury set up
by the host country. Eventually, only 6 problems will be
accepted for use in the competition. The host country does not
provide any question. The short-listed problems are
subsequently translated, if necessary, in English, French,
German, Russian and other working languages. After that, the
team leaders will translate the problems into their own
languages.

The answer scripts of each participating team will be
marked by the team leader and the deputy leader. The team
leader will later present the scripts of their contestants to the
coordinators for assessment. If there is any dispute, the matter
will be settled by the jury. The jury is formed by the various
team leaders and an appointed chairman by the host country.
The jury is responsible for deciding the final 6 problems for the
competition. Their duties also include finalizing the marking
standard, ensuring the accuracy of the translation of the
problems, standardizing replies to written queries raised by
participants during the competition, synchronizing differences
in marking between the leaders and the coordinators and also
deciding on the cut-off points for the medals depending on the
contestants’ results as the difficulties of problems each year are
different.
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China had participated informally in the 26th IMO in 1985.
Only two students were sent. Starting from 1986, except in
1998 when the IMO was held in Taiwan, China had always sent
6 official contestants to the IMO. Today, the Chinese
contestants not only performed outstandingly in the IMO, but
also in the International Physics, Chemistry, Informatics, and
Biology Olympiads. So far, no other countries have overtaken
China in the number of gold and silver medals received. This
can be regarded as an indication that China pays great attention
to the training of basic skills in mathematics and science

education.

Winners of the IMO

Among all the IMO medalists, there were many who eventually
became great mathematicians. They were also awarded the
Fields Medal, Wolf Prize and Nevanlinna Prize (a prominent
mathematics prize for computing and informatics). In what
follows, we name some of the winners.

G. Margulis, a silver medalist of IMO in 1959, was
awarded the Fields Medal in 1978. L. Lovasz, who won the
Wolf Prize in 1999, was awarded the Special Award in IMO
consecutively in 1965 and 1966. V. Drinfeld , a gold medalist of
IMO in 1969, was awarded the Fields Medal in 1990. J.-C.
Yoccoz and T. Gowers, who were both awarded the Fields
Medal in 1998, were gold medalists in IMO in 1974 and 1981
respectively. A silver medalist of IMO in 1985, L. Lafforgue,
won the Fields Medal in 2002. A gold medalist of IMO in 1982,
Grigori Perelman from Russia, was awarded the Fields Medal in
2006 for solving the final step of the Poincaré conjecture. In

1986, 1987, and 1988, Terence Tao won a bronze, silver, and
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gold medal respectively. He was the youngest participant to
date in the IMO, first competing at the age of ten. He was also
awarded the Fields Medal in 2006.

A silver medalist of IMO in 1977, P. Shor, was awarded
the Nevanlinna Prize. A gold medalist of IMO in 1979, A.
Razborov, was awarded the Nevanlinna Prize. Another gold
medalist of IMO in 1986, S. Smirnov, was awarded the Clay
Research Award. V. Lafforgue, a gold medalist of IMO in
1990, was awarded the European Mathematical Society prize.
He is L. Laforgue’s younger brother.

Also, a famous mathematician in number theory, N.
Elkis, who is also a foundation professor at Havard University,
was awarded a gold medal of IMO in 1981. Other winners
include P. Kronheimer awarded a silver medal in 1981 and R.
Taylor a contestant of IMO in 1980.

Mathematical competition in China
Due to various reasons, mathematical competition in China
started relatively late but is progressing vigorously.

“We are going to have our own mathematical competition
too!” said Hua Luogeng. Hua is a house-hold name in China.
The first mathematical competition was held concurrently in
Beijing, Tianjing, Shanghai and Wuhan in 1956. Due to the
political situation at the time, this event was interrupted a few
times. Until 1962, when the political environment started to
improve, Beijing and other cities started organizing the
competition though not regularly. In the era of cultural
revolution, the whole educational system in China was in chaos.
The mathematical competition came to a complete halt. In

contrast, the mathematical competition in the former Soviet
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Union was still on-going during the war and at a time under the
difficult political situation. The competitions in Moscow were
interrupted only 3 times between 1942 and 1944. It was indeed
commendable.

In 1978, it was the spring of science. Hua Luogeng
conducted the Middle School Mathematical Competition for 8
provinces in China. The mathematical competition in China
was then making a fresh start and embarked on a road of rapid
development. Hua passed away in 1985. In commemorating
him, a competition named Hua Luogeng Gold Cup was set up in
1986 for the junior middle school students and it had a great
impact.

The mathematical competitions in China before 1980 can
be considered as the initial period. The problems set were
within the scope of middle school textbooks. After 1980, the
competitions were gradually moving towards the senior middle
school level. In 1981, the Chinese Mathematical Society
decided to conduct the China Mathematical Competition, a
national event for high schools.

In 1981, the United States of America, the host country of
IMO, issued an invitation to China to participate in the event.
Only in 1985, China sent two contestants to participate
informally in the IMO. The results were not encouraging. In
view of this, another activity called the Winter Camp was
conducted after the China Mathrmatifcal Competition. The
Winter Camp was later renamed as the China Mathematical
Olympiad or CMO. The winning team would be awarded the
Chern Shiing-Shen Cup. Based on the outcome at the Winter
Camp, a selection would be made to form the 6 — member

national team for IMO. From 1986 onwards, other than the
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year when IMO was organized in Taiwan, China had been
sending a 6 - member team to IMO. China is normally awarded
the champion or first runner-up except on three occasions when
the results were lacking. Up to 2006, China had been awarded
the overall team champion for 13 times.

In 1990, China had successfully hosted the 31st IMO. It
showed that the standard of mathematical competition in China
has leveled that of other leading countries. First, the fact that
China achieves the highest marks at the 31st IMO for the team
is an evidence of the effectiveness of the pyramid approach in
selecting the contestants in China. Secondly, the Chinese
mathematicians had simplified and modified over 100 problems
and submitted them to the team leaders of the 35 countries for
their perusal. Eventually, 28 problems were recommended. At
the end, 5 problems were chosen (IMO requires 6 problems).
This is another evidence to show that China has achieved the
highest quality in setting problems. Thirdly, the answer scripts
of the participants were marked by the various team leaders and
assessed by the coordinators who were nominated by the host
countries. China had formed a group 50 mathematicians to
serve as coordinators who would ensure the high accuracy and
fairness in marking. The marking process was completed half a
day earlier than it was scheduled. Fourthly, that was the first
ever IMO organized in Asia. The outstanding performance by
China had encouraged the other developing countries, especially
those in Asia. The organizing and coordinating work of the
IMO by the host country was also reasonably good.

In China, the outstanding performance in mathematical
competition is a result of many contributions from the all

quarters of mathematical community. There are the older
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generation of mathematicians, middle-aged mathematicians and
also the middle and elementary school teachers. There is one
person who deserves a special mention and he is Hua Luogeng.
He initiated and promoted the mathematical competition. He is
also the author of the following books: Beyond Yang hui’s
Triangle, Beyond the pi of Zu Chongzhi, Beyond the Magic
Computation of Sun-zi, Mathematical Induction, and
Mathematical Problems of Bee Hive. These were his books
derived from mathematics competitions. When China resumed
mathematical competition in 1978, he participated in setting
problems and giving critique to solutions of the problems. Other
outstanding books derived from the Chinese mathematics
competitions are: Symmetry by Duan Xuefu, Lattice and Area
by Min Sihe, One Stroke Drawing and Postman Problem by
Jiang Boju .

After 1980, the younger mathematicians in China had
taken over from the older generation of mathematicians in
running the mathematical competition. They worked and
strived hard to bring the level of mathematical competition in
China to a new height. Qiu Zonghu is one such outstanding
representative. From the training of contestants and leading the
team 3 times to IMO to the organizing of the 31th IMO in
China, he had contributed prominently and was awarded the P.

Erdos prize.

Preparation for IMO
Currently, the selection process of participants for IMO in
China is as follows.

First, the China Mathematical Competition, a national

competition for high Schools, is organized on the second Sunday
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in October every year. The objectives are: to increase the
interest of students in learning mathematics, to promote the
development of co-curricular activities in mathematics, to help
improve the teaching of mathematics in high schools, to
discover and cultivate the talents and also to prepare for the
IMO. This happens since 1981. Currently there are about
200,000 participants taking part.

Through the China Mathematical Competition, around 150
of students are selected to take part in the China Mathematical
Olympiad or CMO, that is, the Winter Camp. The CMO lasts
for 5 days and is held in January every year. The types and
difficulties of the problems in CMO are very much similar to the
IMO. There are also 3 problems to be completed within 4.5
hours cach day. However, the score for each problem is 21
marks which add up to 126 marks in total. Starting from 1990,
the Winter Camp instituted the Chern Shiing-Shen Cup for team
championship. In 1991, the Winter Camp was officially
renamed as the China Mathematical Olympiad (CMO). It is
similar to the highest national mathematical competition in the
former Soviet Union and the United States.

The CMO awards the first, second and third prizes.
Among the participants of CMO, about 20 to 30 students are
selected to participate in the training for IMO. The training
takes place in March every year. After 6 to 8 tests and another
2 rounds of qualifying examinations, only 6 contestants are
short-listed to form the China IMO national team to take part in
the IMO in July.

Besides the China Mathematical Competition (for high
schools), the Junior Middle School Mathematical Competition

is also developing well. Starting from 1984, the competition is
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organized in April every year by the Popularization Committee
of the Chinese Mathematical Society. The various provinces,
cities and autonomous regions would rotate to host the event.
Another mathematical competition for the junior middle schools
is also conducted in April every year by the Middle School
Mathematics Education Society of the Chinese Educational
Society since 1998 till now.

The Hua Luogeng Gold Cup, a competition by invitation,
had also been successfully conducted since 1986. The
participating students comprise elementary six and junior middle
one students. The format of the competition consists of a
preliminary round, semi-finals in various provinces, cities and
autonomous regions, then the finals.

Mathematical competition in China provides a platform for
students to showcase their talents in mathematics. It encourages
learning of mathematics among students. It helps identify
talented students and to provide them with differentiated
learning opportunity. It develops co-curricular activities in
mathematics. Finally, it brings about changes in the teaching of

mathematics.
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China Mathematical
Competition

2006

Popularization Committee of Chinese Mathematical Society and
Zhejiang Mathematical Society were responsible for the assignment
of the competition problems in the first round and the extra round of

the competition.

Part I Multiple-choice Questions ( Questions 1 to 6, each
carries 6 marks, )
@D Let AABC be a given triangle. If IB_JE — B0 % IEEI
for anyz € R, then AABC is ( i
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(A) an acute triangle (B) an obtuse triangle

(C) a right triangle (D) not known
Solution Suppose /ABC = «. Since | BA —1¢ BE| = |AC|s
we have

|BA|? —2: BA « BC +¢2| BC|* > |AC|>.
Let
t=—§ﬁ_:§6,
| BC|>
we get
|B_1a:|2 —2|§ﬁ|2cosza +C052a|B_A’|2 = |E€3|2

That means | BA | ?sin’e = |AC|?, i.e. | BA |sina = |AC|.
On the other hand, let point D lie on line BC such that
AD | BC. Then we have IB_ﬁ.‘Isina = |A_15| < I‘E(El Hence

|1¢1—5| = |E&| , and that means ~ACB = —;— Answer: C.

@» Suppose log, (22> +x —1) >log,2 —1. Then the range of

x is ( 2
(A)%<x<1 (B) z >~ andz #1
(C)x =>1 (D)0 <x <1
£ >(]’
Solution From <z # 1, we get x > —;—, z # 1.
2z +x —1>0,
Furthermore,

log. (222> +z —1) >log,2 —1=>log. (22 +2? —z) >log.2=>

Oz <1, & =y
or Then we have
202 + 2 —x <2, 22 +x2 —x >2.
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x >%andx +# 1. Answer: B.

&P Supposc A ={z | 5z —a <0}, B ={x | 62 —b >0},
a, b € NyandA N B NN = {2, 3, 4}. The number of
such pairs (a, b) is ( D

(A 20 (B) 25 (C) 30 (D) 42
Solution Since 5z —a <0=>zx g—‘;—, 6x —b >0=>zx >%. In
1< <o,
order to satisfyA N B NN = {2, 3, 4}, we have
4<% <5,

6 <b <12, _ . /6y /5
or So the number of pairs (a, b) IS( )( )=3(}.
20 <a < 25. 1

Answer: C.

@» Given a right triangular prism A,B,C, - ABC with

£ZBAC =%andAB =AC =AA, =1, let G, E be the

midpoints of A,B;, CC,; respectively; and D, F be
variable points lying on segments AC, AB (not including
endpoints) respectively. If GD | EF, the range of the
length of DF is ( b

(A)[%,l) B [+, 2)
© [1,v2) (D) [%ﬁ)

Solution We establish a coordinate system with point A as
the origin, line AB as the x-axis, AC the y-axis and AA, the z-

axis. Then we have F(¢,, 0, 0) (0 <¢, < 1), E(O, 145 %),
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G(% ) D0, t»s 0) (0 < ¢, < 1). Therefore EF =

(tn -1, —%), (}_5 = (—%, L2y —1). Since GD | EF, we

gett; +2t, = 1. Then 0 < < 5 Furthermore, DF = (21,

— a2y 0)!

|DF| =& +8 = «/5z2—4z2+1—\/5 —% %

We obtain, ,‘% < |§7| < 1. Answer: A.

@& Suppose f(z) = z* +log,(z ++/z> +1). Foranya, b €
R, to satisfy f(a) + f(b) =0, the conditiona +56 =0 is
( ).
(A) necessary and sufficient
(B) not necessary but sufficient
(C) necessary but not sufficient

(D) neither necessary nor sufficient

Solution Obviously f(z) = z* +log, (x + /x> + 1) is an odd
function and is monotonically increasing. So, ifa +6 =0, i.e.
a =—b,weget f(a) =f(—b), fla) =—f(b), and that means
fla) + f() =0,

On the other hand, if f(a) + f(b) = 0, then f(a) =
—fb) =f(—b). Soa =—b, a +b =0. Answer: A.

@» Let S be the set of all those 2007-place decimal integers
2a,a,as *** ax Which contain odd number of digit ‘9’ in
each sequencea,, az» as» ***» axw. The cardinal number
of Sis
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(A) 1 (102% +§2%) (B) - (10™% —g2%)

(C) 10206 | g2006 (D) 10?®6 — g200s
Solution Define A as the number of the elements in S,

we have

P (20106)gm +(2(;06)92m3 e +@gg§)9

On the other hand,

2006 ,2006
(9 + -I)Zm‘-ﬁ = 92iﬂlﬁ-k
20 )
and
06,2006
(() g -1)20[16 e (_ 1)&92[]"&—.&.
2l )
So
2006 2006 2006
A= g0 | 9203 4 eee 4 9
Ly 2=+ 5 ) oo
= %(102006 —82006).
Answer: B.

Part II Short-Answer Questions ( Questions 7 to 12, each
carries 9 marks. )
@D Let f(x) =sin*x —sinzcosz +cos*x, the range of f(x)
is

Solution As

sin*x — sin xcos x + cos'x

f(z)

=1 —isin 2x —isinzlr,

2 2
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we define t = sin 2z, then

2
f(x)=g(t)=1—%z—%¢2=%_%(3+%)_
So we have
_{gglg(t)—g(n 57 Xy =0
and
N L. P |
—ﬁ‘%&}élg(”_g( 3|~y o
9
Hence 0 < f(x) ég.

@D Let complex number z = (a +cos @) + (2a — sin i, If
| z | <2 foranyfd € R, then the range of real number « is

Solution By the definition given above, we have, for anyd €
R,

|z |<2©(a +cos@)? + (2a —sinf)? < 4

& 2a(cos@ —2sinfd) <3 —5a?
& —2/5asin(d —¢) <3 —5a?

=25 | a | <3 —5a2

=|a Ié‘/—g.
5
So the range of a is [—‘%5_, ‘%—5—}

@D Suppose points F,, F, are the left and right foci of the
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ell1psel6+ 4

z —+3y +8 +243 = 0. When /F,PF, reaches the

|PFI|IS
| PF, |

Solution Euclidean geometry tells us that, /F,PF, reaches

= 1 respectively, and point P is on line /:

maximum, the value of ratio

the maximum only if the circle through points F,, F,, P is
tangent to the line [ at P. Now suppose / intercepts the x-axis
at point A(—8 —2y/3, 0). Then Z/APF, = /AF,P, and that
means AAPF, «» AAF,P. So

| PF: | _ | AP |
| PF, | |AF, |

By using the power of points theorem, we have

| AP |> =| AF, |«| AF, |.
AsF,(—2/3, 0), F,(2¥3, 0), A(—8 —2/3, 0), so

| AF, | =8, | AF, | = 8 +443.

Then we get

|PF||=\/AF,|=\/ g
| PF, | AF, | 8 +4/3
=V4-2/3 =3 —1.

@[> Suppose four solid iron balls are placed in a cylinder with
the radius of 1 cm, such that every two of the four balls
are tangent to each other, and the two balls in the lower
layer are tangent to the cylinder base. Now put water into
the cylinder. Then, to just submerge all the balls, we
need a volume of cm’® water.

Solution Let points O,, O,, O;, O, be the centers of the
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four solid iron balls respectively, with O, O, belonging to the
two balls in the lower layer, and A, B, C, D be the projective
points of O,, O,, O3, O, on the base of the cylinder. ABCD

constitute a square with the side of L_ So the height of the

V2
2
immersed. Hence the volume of water we need is

rr(l +‘%§)—4 X%n(%)s - (% +‘/7§)n.

water in the cylinder must be 1 +-=-, so that all the balls are just

@I» The number of real solutions for equation
(% 4+ 1)A +22 +2* ++ +22) = 200622
is ;
Solution We have

(22® 1 Hgtbgtids a4y =2006:7
(I+ Zr,05)(1 22 4zt e+ 22%) = 2006

5 1 1 1
S x+ax+xd e 5 20n5+ i T

e 4 = 2006
£ f

42)20{)6:x+l + 23 _|_i3 S N
X T T
=2 X 1003 = 2006,

where the equal holds if and only if x = %, = ﬁ, et

ZR - zuu: Thenz ==+1.

T

Since x << 0 does not satisfy the original equation, x = 1 is
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the only solution. So the number of real solution is 1.

@F)» Suppose there are 8 white balls and 2 red balls in a packet.
Each time one ball is drawn and replaced by a white one.
Then the probability of drawing out all of the red balls
just in the fourth draw is

Solution The following three cases can satisfy the condition.

1st draw  2nd draw  3rd draw  4th draw

Case 1 Red White White Red
Case 2 White Red White Red
Case 3 White White Red Red

So the probability
P = P(Case1) + P(Case2) + P (Case 3)

22V el o 852 48 o1
_u)x(m) ST RET R TR AT

+ (1) *$ %%

= 0. 0434.

Part I Word Problems (Questions 13 to 15, each carries 20
marks. )
€E» Given an integer n > 2, define M, (xy, y,) to be an
intersection point of the parabola y> = nx —1 and the line
y = z. Prove that for any positive integer m , there exists
an integer £ = 2 such that (xf', yi) is an intersection
point of y> = kxr —landy = x.

Proof Since M,(xy, y,) is an intersection point of y*> = nzx —
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n++/n?—4

landy =z, we getxy = yy = >

. Then obviously

1
Iy 4= = n.
Iy

Let (=7, yi) be an intersection point of y*> = kx — 1 and

y = x. Then we get

k =z +im.

Xy

We denote k,, = x§ + im Then,

Iy

katt = (20 +i)—k,,,_1 =il — B GRS, (D
i)

Since £; = n is an integer,

kz =Iﬁ+3:1—2 P (In"‘%)——z =pn?—2

0 -0

is also an integer. Then, by the principle of mathematical

induction and (D, we conclude that for any positive integer m,

kn =x8 + Lm is a positive integer too. Let & = z§ + im So
Iy Iq

(xf, ¥§) is an intersection point of y*> = kx —landy = x.

@) Let 2006 be expressed as the sum of five positive integers

L1y Lzs Tzs Lg9 Iss and S = E ITj. WcaSk:
1=i<j<5

(1) What value of z;, x;, x3, x4, x5 will make S the
maximum?

(2) Further, if | z; —z; |<2forany1 <i, j <5, then
what value of x,, z2, 3, x4, x5 Will make S the
minimum? You should prove your answer.

Solution (1) Obviously the number of the values of S is

finite, so the maximum and minimum exist. Suppose r; +z, +
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x3 + x4 + x5 = 2006 such that S = E x.x; reaches the
1<G<G<5
maximum, we must have

|I1_I1|g15(1gf!]é5). @

Otherwise, assume that (I) does not hold. Without loss of
generality, suppose x; —z; =2, Letz| =z, —1, 25 =z, +1,
z; =x;(i =3, 4, 5). We have

’ ’ ! ! A
T @ txs Tga+Es =3 t@mytas oy +xs

2006,

S= D) za

1<iei<s
=zix: + (1 +x22)(x3 + 34 +35) F T334 FT3T5 +TaT5

S =2ixs + () +x25) (x5 + x4 +25)

+x3x4 X375 +2875.
So
S —8S =zizh —x12, >0.

This contradicts the assumption that S is the maximum.
Therefore | z; —x; | <1 (1 <i, j <5). And it is easy to

check that S reaches the maximum when
Ly = 402; Xz — Xz — XLy — Ty — 401.

(2) If we neglect the order in z;, x2, 3, x4, x5, there
could only be three cases:
(a) 402, 402, 402, 400, 400;
(b) 402, 402, 401, 401, 400;
(c) 402, 401, 401, 401, 401.
That satisfy x; +x; + x5 +a4 +a5 =2006and | z; —z; |<2.
Cases (b) and (c) can be obtained from Case (a) by setting

z; =z;—1, x; =z; +1, What we have done in (1) tells us that
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each step like this will make S" = > z/z) greater. So S is the
1<i<<5
minimum in Case (a), i.e. x; =z, = 23 = 402, x4 = x5 = 400.

€ Suppose f(z) = x? + a. Define f'(z) = f(@), f/(x) =
'@y n=2,3,,andletM = {a €R]| | f(0) |2,

for any n € N}. Prove that M = [—2, i].

*

Proof (a) Whena <—2, then | f'(0) | =| a | > 2, therefore
a & M.

(b) When —2 <a <0, we have | f'(0) |=|a |<2.

Assume that | f1(0) | <|a | <2fork =>2. Sincea? <—2a for
—2<a <0, we get that

—2<|al| =a <0 = (0 ta
<a’+a<|al|<2

By the principle of mathematical induction, we conclude that
| f"0) | <a <2(Vn=1).

(¢) When 0 < a Q%, we have | f1(0) | =] a IQ%.
Assume that | 71 (0) Ié%fork = 2. We get
¥ 18% .. 1 1
3 h—1 2 o —_ = =
| FAC0d: | ]| F (0)|+ag(2)+4 =

By the principle of mathematical induction, we conclude that

| £7(0) |g% (Vn=1).

From (b) and (c), we obtain [—2, %JQM.

(d) Whena > %, definea, = f"(0). We have

At = 10 = f(f*(0)) = fla,) =ai +a,



China Mathematical Competition 13

thena, >a >% for anyn = 1. Since

w1y —Qn =al —a +a=(a —i)2+a—l>a—i
1 n n n n 2 4 = 4!
we get
Apry — A = Ay — A
= (an+l _a") —+ e +(a2 _a])
Zn(a—%).

a
» we have

i
4

Therefore, whenn > 2
5=

At En(a —%)-ﬁ-a >2—a+ta =2.

And that meansa € M.

From (a)—(d), we proved that M = [—2, %]

2007

Popularization Committee of Chinese Mathematical Society and
Tianjin Mathematical Society were responsible for the assignment
of competition problems in the first round and the extra round of the
competition.

Part I Multiple-Choice Questions ( Questions 1 to 6, each
carries 6 marks, )
@D Given a right square pyramid P-ABCD with ZAPC =
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60°, as shown in the figure, prove p
that the cosine of the plane angle
of the dihedral angle A-PB-C is

¢
1 a ik &
w - ‘
L - | . B
(g D) -

Solution On PAB, draw AM | PB with M as the foot drop,
connecting CM and AC, as seen in the figure. Then ZAMC is
the plane angle of the dihedral angle A — PB - C. We may

assume that AB = 2, Then we get PA = AC = 242, and the
vertical height of /APAB with AB as base isv/7. So we have 2 X

N7 =AM « 2/2. 'IhatmeansAM=.;% = CM. By the Cosine

Rule we have

_ _AM2 +CM? —AC* _ 1
oo ZAMC =2 Ll e =

Answer: B.

@&» Suppose real number « satisfies | 2z —a | +| 3z —2a | = a?

for any z € R. Then a lies exactly in ( Ya
11 ke

w[-33]  @[44]

W[ =gl (D) [-3, 3]

Solution Letx = %a. Then we have | a | < % Therefore

(B) and (D) are excluded. By symmetry, (C) is also excluded.
Then only (A) can be correct.
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In general, for anyk € R, letz = %ka. Then the original

inequality becomes

3 4
'l W o == |2 |,
lal-lk—=1]+51lal 3’ | a |
This is equivalent to

EPRPR | .
lal<le—11+3[e -4,

We have
—gk 3, k;%,
|k—1|+%‘k—%‘=<1—%, 1<k <4
3—%,&, B<t.
So

. - oo 3 £ O | N
mip{ 12 -11+3 [t 3|} - .

The inequality is reduced to | a | < —-. Answer: A.

W=

@» Nine balls of the same size and color, numbered 1, 2, **,
9, were put into a packet. Now A draws a ball from the
packet, noted that it is of number a, and puts back it.
Then B also draws a ball from the packet and noted that it
is of number &#. Then the probability for the inequality
a —2b +10 >0 to hold is ( Vi
) 2 ® 2 © 3 R

Solution Since each has equally 9 different possible results for
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A and B to draw a ball from the packet independently. the total
number of possible events is 9> = 81, Froma —2b6 +10 > 0 we
get 26 <<a +10. We find that whenb =1, 2, 3, 4, 5, a can take
any value in 1, 2, -+, 9 to make the inequality hold. Then we
have 9 X 5 = 45 admissible events.

When b = 6, a can be 3, 4, -, 9, and there are 7
admissible events.

Whenb = 7, a can be 5, 6,7, 8,9, and there are 5
admissible events.

Whenéb =8, a can be 7, 8, 9, and there are 3 admissible
events.

Whenb = 9, a can only be 9, and there is 1 admissible
events.

45+7+5+3+1 _ 61
81 81"

So the required probability is

Answer: D.

@» Let f(x) =3sinx +2cos x + 1. If real numbers a, b, c
are such thataf(x) +bf(x —c¢) =1 holds for any z € R,

then !% equals ( ).
W—= B ey ~4 (D) 1
2 2

Solution Letc == Then f(z)+f(x —c) =2foranyzx € R.

Now leta = b =%, and ¢ = . We have

af(x) +bf(x —c) =1

for any x € R. Consequently, % =—1. So Answer is (C).

More generally, we have
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f(x) = J/13sin(x +¢) +1,
flz —¢) = J/13sin(z +¢—c) +1,

2

3 Thenaf(zx) +bf(x —¢c) =1

where 0 < ¢ < % and tang =
becomes

V13asin(x +¢) + /13bsin(z +¢ —¢) +a +b = 1.
¢ ¢

That is,
v 13asin(z + ¢) + +/13bsin(x + ¢@)cos ¢
— v/ 13bsinccos(x +¢) +(a +b —1) =0.
Therefore

V13 (a +bcos )sin(x + @) — +/13bsin ccos(x + ¢)
+(a+b6—-1) =0.

Since the equality above holds for any x € R, we must have

a +bcosc =0,
bsinc =0,
a+b6—1=0,

©®e o

If 5 =0, thena = 0 from @, and this contradicts 3. So
b # 0, and sinc =0 from @). Thereforec =2kn +norc =2kx
(k € D).

If c =2kw, thencosc = 1, and it leads to a contradiction
between (D) and @). Soc = 2knx + (b € Z) andcosc =— 1.

beosc _ _ 4
a

From @ and @, we geta =b = % Consequently,

@&» Given two fixed circles with O, and O, as their center

respectively, a circle P moves in a way such that it is
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tangent to both of them. Then the locus of the center of
P cannot be ( ).

e 2| €

(A)

(B)
© ) «
(C) (D)

Solution Suppose the radii of the two fixed circles are r, and
r, respectively, and | O,0; | = 2¢. Then, in general, the locus
of the center of P is given by two conic curves with O, O, as
2c 2¢

?’1""?'2’ |?'1_?‘2|

the foci, and the eccentricities,

respectively. (When »; = r, , the perpendicular bisector of
0,0, is a part of the locus. When ¢ = 0, the locus is given by
two concentric circles. )

When »y =r;andr, +r, <2c, the locus of the center of P
is like (B). When 0 < 2¢ <| r;, —r» |, the locus is like (C).
When r; # r, and r, +r, < 2¢, the locus is like (D). Since the
foci of the ellipse and the hyperbola in (A) are not identical,
the locus of the center of P cannot be (A). Answer: A.

@» Lect A and B be two subsets of {1, 2, 3, =+, 100},
satisfying | A |=| B |and A N B = . If n € A always
implies 2n +2 € B, then the maximum of | A U B | is
( ).

(A) 62 (B) 66 (C) 68 (D) 74

Solution We will first prove that | A U B [< 66, or

equivalently | A | <33. For this purpose, we only need to prove



China Mathematical Competition 19

that, if A is a subset of {1, 2, **-, 49} with 34 elements, then
there must exist n € A such that 2n +2 € A. The proof is as
follows.

Divide {1, 2, ==+, 49} into 33 subsets:

{1, 4}, {3, 8}, {5, 12}, ===, {23, 48}, 12 subsets;

{2, 6}, {10, 22}, {14, 30}, {18, 38}, 4 subsets;

{25}, {27}, {29}, -, {49}, 13 subsets;

{26}, {34}, {42}, {46}, 4 subsets.

By the Pigeonhole Principle we know that there exists at
least one subset with 2 elements among them which is also a
subset of A. That means there exists n € A such that 2n +
2 €eA.

On the other hand, let

A — {1; 3; Sy ammy 23; 2, 1(], 149 189 259 279 299 ey 499
26, 34, 42, 46}

B =1{2n+2|n € A}. We find that A and B satisfy the
condition and | A U B | = 66. Answer: B.

Part I Short-Answer Questions ( Questions 7 to 12, each

carries 9 marks, )

@» Given four fixed points A(—3, 0), B(1, —1), C(0, 3),
D(—1, 3) and a variable point P in a plane rectangular
coordinates system, the minimum of | PA |+| PB |+
| PC |+ | PD | is

Solution As shown in the figure, assuming that AC and BD

meet at point F, we have
| PA |+| PC | =| AC | =| FA |+| FC |

and
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| PB |+| PD |=| BD | =| FB |+| FD |.
When P coincides with F, | PA |+| PB |+ P¢”
| PC |+| PD | reaches the minimum.
Thatis | AC |+| BD |=342 +245. So 4
342 +24/5 is the required answer.

@» Given AABC and AAEF such that B is the midpoint of
EF. Also, AB =EF =1, BC =6, CA = /33, and AB -
AE +AC « AF = 2. The cosine of the angle between EF

and BC is
Solution We have
2 = AB - AE +AC « AF
— AB « (AB +BE) +AC - (AB +BF),
i.e.
AB? +AB « BE +AC « AB +AC « BF =2.
AsAB? =1,

—  —3=

33 +1—36
AC- A J_XIX—=—
X /33 X1

and BE :—gﬁ,wcget
1+BF « (AC —AB) —1 =2,

i.e. BF « BC =2. Defining ¢ as the angle between EF and BC,

2

we get | BF | «| BC |+ cos@ =2o0r3cosf = 2. Socosl = 3

@» Given a unit cube ABCD-A,B,C,D,, construct a ball

with point A as the center and of radius 2’/_ Then the
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length of the curves resulting from the intersection

between the surfaces of the ball and cube is

Solution As shown in the figure, the D K

surface of the ball intersects all of the six 4 : -

surfaces of the cube. The intersection :

curves are divided into two kinds: One D-.I _____ i b

kind lies on the three surfaces including £ * 4 j / '
1 E |

vertex A respectively, that is AA,B,B,
ABCD, and AA,D,D; while the other lies on the three surfaces not
including A, that is CC,D,D, A,B;C,D, and BB,C,C.

On surface AA,B,;B, the intersection curve is arc EF

which lies on a circle with A as the center. Since AE = 2*/_
AA; = 1, so ZAAE = % In the same way /BAF = —g—

Therefore /EAF = =, That means the length of arc EF is

6
% . % = ‘gm There are three arcs of this category.

On surface BB,C,C, the intersection curve is arc FG which

lies on a circle centred at B. The radius e:quals‘%3 and /FBG =

So the length of FG is ‘/E % = gn. There are also three

2
arcs of this category.
In summary, the total length of all intersection curves is

V3 V3 _ _ 5/3=
3X91r+3><6;r:— z -

@» Let {a,} be an arithmetic progression with common
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difference d (d # 0) and {b,} be a geometric progression
with common ratio g, where ¢ is a positive rational

_ . at +aj +aji.
number less than 1. Ifa, =d, b, =d and—b1 8, is

a positive integer, then ¢ equals
Solution As

a +a3 +a: ai+(a; +d)? 4+ (a; +2d)°

by +b; +b; by +b1q +b1q°

1+qg+4q°

is a positive integer, we get 1 +q +¢*> = :?1—4 Then

—— 2,14 o __ 1 56 —3m
g =—g gty > TN

Since ¢ is a positive rational number less than 1, we have 1 <

18 -3, 1.6 5<m<13, and 20 —m
m 4m

number. We can verify that only m = 8 meets the required.

is the square of a rational

That means g = %

; _ sin{mz) —cos(xnx) +2 1. B
€D Given f(z) = = for4€x€4,

the minimum of f(z) is

Solution By rewritting f(x), we have

»./fsin(ru: —-it*)+2

flx) =

x

Define g(z) = ﬁsin(n:r = —:I—) » where
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N

% S ol = % Then g(x) =0, and g (x) is monotone increasing

n[l AJ nd monot decreasin n[é é}
on| 7 o |»a onotone decreasing o 2 4

Further, the graph of y = g (x) is symmetric about x = % ,
5 1 3 . % 5
i.e. for anyx, € [Ts I} there exists , € [E ’ I:I such that

g(x,) = g(xy). Then

_glx) +2 _ glzp) +2 >g(.rg) +2

vy Ve,

On the other hand, f (x) is monotone decreasing on

f(.I'1) zf(Iz).

[3 é]. Therefore f(z) = f(i) - TJET That means the

4’ 4 4
minimum value of f(z) on [%; %:I is %

@%» Four letters, two “a”s and two “b”s, are filled into 16
cells of a matrix as shown in figure. It is required that

each cell contains at most one letter, and

each row or column cannot contain the

same letters. Then there are

different ways that the matrix can be

filled. (A numerical answer is needed. )

] 4
Solution It is easy to see that there arc(Q)- § =72 different

“_»
a

ways to put two s into the matrix such that each row and

each column contains at most one “a”

. Similarly, there are also
4
(2) « P3 =72 different ways for two “46”s to do the same thing.

By the multiplicative principle we get 72° ways. Among them
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we exclude 72 cases in which two “b”s occupy the same cells as

16
the two “a”s do, and exclude( g )- P} =16 X 72 cases in which

[ ]

one “a” shares the same cell with a “6”. Therefore there are
72> —72 —16 X 72 = 3960 different ways that meet the

requirement.

Part I Word Problems (Questions 13 to 15, each carries 20
marks. )

1
= e e ==
€ Leta, tE=| W F 1= Prove thata,., <a, forn =2.

Proof As

1 1 1 1
_ —+— .
Eln+1—F) n—i—l(k n—l—i—k)

n 1
we gCt a, 1 kE_-i: b hen for n 2 we have

%(an _an-H) = % T

> 0.

That means a,+, <<a,.

@L» Suppose line / through point (0, 1) and curve C:y = = +
%(I > () intersect at two different points M and N.

Find the locus of the intersection points of two tangent

lines of curve C at M and N respectively.
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Solution Denote the coordinates of M and N as (z,, y,) and
(x,, y2) respectively. Denote the tangent lines of C at M and
N by I, and I, respectively, with their intersection point being
P(z,, y,). Suppose the slope ratio of line / is k. Then we can
write the equation of / asy = kx + 1.

Eliminating y from

y e 1 +;7

y =kxr +1,

wegetr—i—% =kx +1,1i.e. (¢ —Dzx?* +z —1 =0. By the

assumption, we know that the equation has two distinctive real

roots, x; and x,, on (0, +o=). Thenk # 1, and

A=1+4k —1) >0, @

Ty +Ig=ﬁ>[}' ®

I|I2=L>0 @
T T

From the above we get % e Sy

We find the derivative of y = = +% asy =1 —%. Then
I Ii% and y’| =, =1 —xl%. Therefore, the equation
of line /, is

y =y =1 —ﬁ)(x —z1)
1
or
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After simplification, we get
2
@

1
=(1-5)z+=,
Y ( I% ® ol

In the same way, we get the equation of /5,

. 2
of (1 I%)x + ®
By @ —®, we get
i =2
(JJ% I%)Ip +.2‘,'1 Xa 9
Since =, # x>, we have
_ 2x1x, @

x = .
£ vl +.I2

Substituting @ and @ into ®, we obtainz, = 2.

By @ + @&, we obtain

1 1 1 1
= J— ”_’+_,, 1 =,
25, = (2 (x% Ii))x,,, +2(x1 +12) @
where
i+i =Il+12 =
Iy ] I1X2
B S s} tai _ Lzp tap)® — 2wy
2
=(11+Iz) 2 =% —1.
I x; T2

Substituting it into @, we have 2y, = (3 —2k)x, + 2. Since
x, =2, theny, =4 —2k. As—% <k <1,weget2 <y, <—g—.

Therefore, the locus of point P is the segment between (2, 2)
and (2, 2.5) (not including the endpoints).
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€5 Suppose f(x +2n) = f(z) for any = € R. Prove: there
are f;(x)( =1, 2, 3, 4) such that
1) f.(z) G =1, 2, 3, 4) is an even function, and
filx +m) = fi(x) for any x € R;
(2) f(zx) = f1i(x) + fo(x)cosx + f3(x)sinx + fy(x)sin2x
for anyx € R.

FaE)+12) _ ) —f—=2)
2 -

Proof letg(x) = ,andh(x) = 5

Then f(x) = g(x) +h(x), g(x) is an even function, h(x) is
an odd function, and g(x +2n) = g(x), h(x +2n) =h(2) for
anyz € R.

Define
Fila) _8W@) -l—g(x +'n:)!
g(-l-)_g(x+“)s -_zékﬁ"i_ﬂs
P 2cos x 2
0, x =kn ‘+‘%9
h(z) —h(x +7) Ty
f3(x) = 2sin x ’ i
09 P :kffr
h(x) +hiz +7) kx
P By | CT Q!
I —
' 0 T —kx
L] 2 ]

where k is an arbitrary integer. It is easy to check that f;(z)
GG =1, 2, 3, 4) satisfy (1).
Next we prove that f(x) + f,(xz)cos x = g(x) for any

x € R, When x ?ﬁkn—k%, it is obviously true. Whenx = kx +

T
o We have
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g(2) +g & +mn)
2 L]

f1(x) + f2(x)cos z = fi(z) =
and

gz +m = g(kn+F) = g(kn +3F — 20k + Dr)

:g(—kn—%)zg(kw—l-%):g(r).

The proof is complete.
Further we prove that f;(z)sinz + fy(z)sin2x = h (x) for

anyx € R, Whenx ;é'%“. it is obviously true. Whenx = kx, we
have
h(z) =h(kn) =h(kn —2kn) =h(—kx) =—h(kn).
That means h(x) = h(kx) = 0. In this case,
fi(x)sinz + fy(x)sin2zx = 0.
Therefore h(x) = fi(x)sinx + f4(x)sin2x,

Whenx = kxn + 2 , we have

hz +m) = h(kx+2F) = h(kn +3F 20k +1)x)
=h(—kx—T)=—h(kx+Z)=—h(a.

So

h(zx) —h(x +xn)

> = h(x).

fi(zx)sinx =

Furthermore, f,(x)sin2x = 0. Therefore
h(x) = fa(x)sinz + fi(x)sin 2z,

This completes the proof.
In conclusion, f;(x) (i =1, 2, 3, 4) satisfy (2).
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@D Suppose an ellipse with points B, and B, as the foci
intercepts side AB; of AAByB, atC;(i =0, 1) . Taking
an arbitrary point P, on the
extending line of AB,, draw arc
13;._@, with By, B, P, as the center
and radius respectively, intercepting
the extending line of C, B, at Q.
Draw arc é:ﬁi with C,, C,Q, as

the center and radius respectively,
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intercepting the extending line of B;A at P,. Draw arc
ﬁ_a. with B;, B;P, as the center and radius
respectively, intercepting the extending line of B,C, at

Q,. Draw arc t;i.—ﬁi, with C,, C,Q, as the center and
radius respectively, intercepting the extending line of
AB, at P;. Prove that

(1) P, and P, are coincident, and arcs Igu_au and ﬁ:ﬁl
are tangent to each other at P,.
(2) Points Py, Qq» Q,, P, are concyclic.
Proof (1) From the properties of an ellipse we know

B,Cy +CyBy = B,C, +C,B,.
Also, it is obvious that
ByPy = BoQys C1By +ByQy =C, Py,
Bi;Cy +CyP; = B,Cy +CoQi» CoQ; = CoB; + B, Py.
Adding these equations, we get BoP, = B,Pj.

Therefore P§ and P, are coincident. Furthermore, as P,
C, (the center of ﬁu) and B, (the center of @U) are lying
on the same line, we know that ﬁn and 150_(30 are tangent
at Py.

(2) We have thus Q, P, and P,Q,, P,Q, and Q,P;, Q,P,
and 151-61 ’ Iar._é‘, and Cﬁ. are tangent at points Py, Qy, Py,
Q; respectively. Now we draw P,
common tangent lines P, T and
P, T through P, and P,

respectively, and suppose the

two line meet at point T.

Also, we draw a common
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tangent line R, S, through Q,, and suppose it intercepts P, T
and P, T at point R, and S, respectively. Drawing segments
P,Q, and P,Q,;, we get isosceles triangles P,Q; R, and P,Q; S,
respectively. Then we have

/ZPQiPy =n— /P,QiR, — Z/P,Q;S,;
=x—(LP,P,T — £ZQ\P,P,)
—(LPoP,T — £Q,P,Py).
Since
n— ZLPuQiPy = ZQ,PyP, + ZQ\ PPy,

we obtain
£PyQ\P, = x—+(LP\PoT + LP,P, D).
In the same way, we can prove that
£PyQoP; = x =5 (LPPoT + LPoP, ).

It implies that points Py, Q,, Q;, P, are concyclic.

@) Suppose an infinite sequence {a,} satisfiesa, = =, a; =

A +1
Vs Qpi 2%9 n = 1! 2; eEs
Ay T Ap

(1) Find all real numbers = and y that satisfy the
statement. there exists a positive integer n,, such that,
forn = ny, a, is a constant.
(2) Find an explicit expression for a, .

Solution (1) We have

_agmabl . ek —1
Ay +aﬂ—] Ay +au—1

p —Ap1 — Ay

1??:112'!"'. @

If there exists a positive integer n such thata,., = a,, we get
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a: =1landa, +a,— #0.

If n =1, we have

|y |=1 and = #—y. @
If n > 1, then
e _ Qu-1dy— +1 " P (a,,_l o= 1)((!'."_2 _1) ~
o 1 & y— +an—2 1 1 +an—3 B /2,
©)
and
4. 41 = @m1@n +1 e . (@ +1)(a,—2 +1) s
= & +an—2 ap— +an'—2 ’ =
@
Multiplying equations @) and @, we get
2 2
2 __ — Ay = - [ | - | -
A 1 Ay +an—2 Ap— +an—2, = /2. @
From B we infer that = and y satisfy either @ or
|z |=1 and y #=—=z. ®

Conversely, if = and y satisfy either @ or ®, then a, =
constant when n = 2 and the constant can only be either 1 or
=

(2) From ® and @, we get

a, =1 Ap— —1 Ap—2 =1
= . =
G T iy P g T @

Gy —1

a, +1

Letb, = . Then, forn = 2, equation (0 becomes

bn e bn ibn'z o= (bn an 3 )bn'z :bi 2 bn 3

s (b!l"3bﬂ—4)2bn—3 = bi—f‘ bﬁ—‘# ey
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Then we get
— L T
sl vt B o T
here,
Fy =Fy +Fpeys w22, Fs =F; =1, ©
From @ we get
4 n o nl
n- k(55 -(055)).

The range of » in (0 can be extended to negative integers. For

example, F_, =0, F_, =1. Since ® holds for anyn =0, we get

_C + P2 (y +1)Fr1 4+ (2 —1)Fr2 (y — 1)Fa
G = e Iealy T — G — 1 — Dt

?'1_.>/0!

)
here F,,, F,—, are determined by (0.

@D Solve the following system of equations.

22—y +22 —w? =6,
=y 42 —w? =20,
z* —y* +2* —w? = 66.
Solution Let p = =z + 2z, ¢ = xz. The second to fourth
equations of the system become
p? = x* +2* +2q,
p? =2 +2° +3pq,
pt =zt + 2 +4prg —2¢%

Similarly. lets = y +w, t = yw. The second to fourth
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equations of the system become

s? =3y +w? +2,
2 =y} +w? + 352,
st =yt +wt +45% — 22

Also, the first equation in the system can now be expressed as
p=s+2 @
Therefore

p?t =52 +4s +4,
p? =s5%+6s52+125 +8,
pt =s* +8s> +24s5 +325 +16.

Substituting the expressions of p*, p*?, p* and s*, s*, s*

obtained previously into the original system, we get
z* +22 +29 = y* +w? +2t +4s +4,
x* +2* +3pqg = y* +w? +3st +65> +125 +8,
'+ 2t +4plq —2¢° = y* +wt +45%t —2¢2 +85°
+ 245 + 325 +16.

Using the second to the fourth equations in the system to

simplify the above, we get

g=t+2s—1, ®@
pq =st +2s* +4s —4, @
2p2q —q® = 252t — %2 + 45 +12s% +165 —25. @
Substituting @ and @ into @), we get
A
B =1, ®

Substituting & into @,
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-
q_zs 2. @

Substituting M, @, ® into @, we gets = 2. Thereforet =0,
p =4,q =3.

Consequently, x, =z and y, w are the roots of equations
X? —4X 43 =0andY? —2Y = 0 respectively. That means

{x=3, {xZL
or
z=1 z=3

{yzz, {y=0,
or
w =10 w =2,

Specifically. the system of equations has 4 solutions:

and

=3sy=2,z=1,w=[);
zssy:(}q?’.zl;sz;
=1gy=252=31w=0;

8 8 8 §

=Igy=0|z=3!w=2.

2007

@D As shown in the figure,
AABC is an acute triangle
with AB < AC. AD is the
perpendicular height on BC
with point P along AD.
Through P draw PE | AC
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with E as foot drop, draw PF | AB with F as foot
drop. O, O, are circumcenters of ABDF, ACDE
respectively. Prove that O,, O,, E, F are concyclic if
and only if P is the orthocenter of AABC.
Proof Connect BP, CP, O,0,, EO,, EF and FO,. Since
PD | BC and PF | AB, therefore points B, D, P and F are
concyclic. BP is the diameter; O;, being the circumcenter of
ABDEF, is the midpoint of BP. In the same way, C, D, P and
E are concyclic, and O, is the midpoint of CP, Then O,0, /
BC , and ZPO,0, = ZPCB . As

AF « AB = AP « AD = AE + AC,
we conclude that B, C, E and F are concyclic.
Sufficiency proof. Assume P is the orthocenter of AABC.
As PE | ACand PF | AB. We know that points B, O,, P and

E are collinear. Therefore
/F0,0, = /FCB = /FEB = /FEO,,
and that means O;, O,, E and F are concyclic.

Necessity proof. Assume O,, O,, E and F are concyclic.
Then £0,0,E + ZEFO, = 180°. We have

Z0,0:E = £0,0,P + ZPO,E
= /PCB +2/ACP
= (LACB — LACP) +2/ACP
= L/ACB + ZACP,
ZEFQO, = ZPFOy+ ZPFE
= (90° — ZABP) + (90° — ZACB).

The last identity holds because B, C, E and F are concyclic.
Then
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£0,0,E + LEFO,
= LACB + LACP + (90° — LABP) + (90° — LACB)

= 180°.
That is, LABP = ZACP. @

Further, since AB << AC and AD | BC, then BD < CD.
There is point B” on CD such that BD = B’D. Connecting AB’,
PB, we have Z/AB'P = Z/ABP. By ®, Z/AB'P = Z/ACP, and
that means A, P, B’, C are concyclic. Then /PB'B =
ZCAP =90° — /ACB, and ~PBC + ~#ACB = (90° — ~#ACB) +
ZACB = 90°. That means BP | AC. Therefore P is the
orthocenter of AABC.

@P» Given a7 X8 checkerboard as seen in the figure, 56 pieces
are placed on the board with each square containing
exactly one piece. If two pieces share a common side or
vertex, they are called “connected”. A group of 5 pieces
is said to have Property A, if these pieces are connected

orderly in a ( horizontal,

vertical or diagonal) line.
What is the least number of

pieces to be removed from the

board to ensure that there exists

e = T R

no group of 5 pieces on the

board which has Property A?
You must prove your answer.
Solution The answer is that at least 11 pieces must be
removed. The following is a proof by contradiction.
Assume that removing 10 pieces from the board would

satisfy the requirement. We denote the square in row : and
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column j as (i, j). As shown in 12345678
Fig.1, to ensure there are no groups ;

of 5 pieces with Property A, we must 3 @ &)
remove at least one piece from the ; ) o)
first 5 squares of each row, i.e. 7 4

pieces; then in the last three columns,

we must remove at least one piece Fig. 1

from the first 5 squares of each column, i.e. 3 pieces. That
means pieces in squares (i, j)(6 <i <7, 6 <j < 8) are
untouched. By symmetry, we conclude that the pieces in the
shadowed areas of the four corners of the board as shown in
Fig. 1 are untouched while removing 10 pieces satisfying the
requirement. Further, it is easy to check that in rows 1, 2, 6, 7
and columns 1, 2, 7, 8, at least one piece should be removed
from each row and each column, i.e. 8 pieces. Then at most
two of pieces named D, @, @, @ in Fig. 1 can be removed.

However, any piece of the four

remained will result in a group of 5 123456738
. ) 1l @ ®

pieces with Property A. For example, , ®

if piece @ (in square (3, 3)) 3 @ ®

remains, then pieces in (1, 1), (2, : = 5 2

2), (3, 3), (4, 4), (5, 5) are 6 @ 0]

connected orderly in a diagonal line. 7 @

That means the removal of 10 pieces is Fig.2

impossible to satisfy the requirement.

On the other hand, as shown in Fig.2, if we remove the 11
pieces in squares numbered D to @, then there is no group of 5
pieces that remained on the board having Property A. That

completes the proof.



China Mathematical Competition (Extra Test) 39

@D Given the set P = {1, 2, 3, 4, 5}, define f(m, k) =

5
E [m zk—_—I: :l for any # € P and positive integer m,
1

i=1
where [a ] denotes the greatest integer less than or equal
to a. Prove that for any positive integer n, there isk € P
and positive integer m, such that f(m, k) = n.

Proof DefinesetA = {m+vk +1 | m € N*, k € P}, where

N* denotes the set of all positive integers. It is easy to check

vk +1
vk, +1

number. Therefore, for any k,, £. € P and positive integers

mysmay myky +1 =my/ky +1 impliecsm, =m, andk; = k,.

Note that A is an infinite set. We arrange the elements in

that for any %y, k, € P, ky # k2, is an irrational

A in ascending order. Then we have an infinite sequence. For

any positive integer n, suppose the nth term of the sequence is

m+'k +1. Any term before the nth can be written as m; /i +1, and
m; vi+1 <mvk+1.
vk +1

Or equivalently, m; <m #—Tl It is easy to see that there are
i

[m M} such m, fori =1, 2, 3, 4, 5. Therefore,
Vi+1

The proof is complete.

]=f('m, k).
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First Day
0800-1230 January 27,2007

@» Given complex numbers a, b, ¢, let | a +b |=m, | a —
b | = n, and suppose mn # (. Prove that

mn

Vm® +n?

max{|ac +b |, |a +bc|}=

Proof ] We have

max{|ac+b|;|a+bc|}2|b|.|ac+b|+|a|-|a+bc|
[ 6|+ a |
Ib(ac +b) —ala +bc) |
| & |+]8 |
_ |62 —a? |
|a |+ 6]
|b+a| —a|
J2(|a Ty
As
m:+n:=la—-b|1>+la+bl|?=2(lal|l>+]b|»,
we get
max{| ac +b |, | a +bc |} >—22
vm? +n?
Proof T Note that
ac +b =1 5@ +0) ~ 155w —b)
and
a+bc—1+c( -1 —<(a —b.
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Letq = ;_c(a +b)andp = - ;f(a —b). Then

|ac +b |*+|a+bc|?=|a—B|*+ a+B|?
=2(|la >+ B 1?.

Therefore

(max{| ac +b |, | a+bc |})* =|a|>+| B

2 — 2
Z‘I;C m2+‘12(.‘ .
Now we only need to prove that
14¢|? ., |1—czz m’n’
2 |® Tz | Bmz-i-nz’
or equivalently
1+C2 4 ‘1_C24 |1+C2 ‘1_62 9.9
‘ > m® + 5 n -f-( 5 + ) )m n
=m?2n’.
We have
1+C2 4 |1_I':24 ‘1+62 ‘1_C2 2 3
|—2 P 5 n +( 5 + > )m n
1+cl||1=c| , ‘1-!—2(‘-}-62 ‘1—25+c2 -
22| > > |m'n +( 4 = 4 )mn
_(1=¢ 1+2¢ +c2 ‘1~2c+c2 ol
_(‘ 2 +’ e e DL
1—¢?  14+2c+c% 1 —2c+c%| 5 »
=58 " 4 * 4 &
=m?2n2,

This completes the proof.
Proof [ Since
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m? =|a+b|*=(a+b)a+b) = (a+b)a+b)
=|a? |+| 6% | +ab +ab,
n?=la—b|*=(a—b)a—b)=(a—b)a—b)
=| a? |+| b* | —ab —ab,
We get

2 2
|a|2+|b|2=¥,

s R
ab+db=?—”—2’l~.

Lete =x +yi, , y € R. Then

| ac +b6 | +| a +bc |?
= (ac +b)(ac +b) +(a +bc)(a +bc)
=|lal|?|c|®>+|b|®+abc +abe +]|a |?

+| 612 |c|*+abc+abc
=(lc|?+DC al|?+] & |*)+(c+2)(ab +ab)

2 2 2 _ 2
= (et pgl ) BBy m —n
2 2
2 2 2 2
>m——|—n 2%+ (m? —n?)z + 22
2 2
_ m? +n? .
a 2 (I+m2+n2)
_m2+n2 m? —n\?*  m?+n?
2 (m2 —|—n2) T 2
>m2 +n2 __l (mz _'?'12)2
= 2 2 m?+n?
_ 2m2n?
m? +n?
That is

2
mzn"

(max{| ac +& |, | a +bc | })? ?m_z R
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Or

max{|ac +b |, | a +bc |} >—Z2
Z i Eat
@) Prove the following statements:
(1) If 2n — 1 is a prime number, then for any group of
distinct positive integers a,, a2+ ***, a, there exist,
a; —l—aJ-

> e
(al'i a;) /2ﬂ 1.

j € {1, 2, *+, n} such that

(2) If 2n — 1 is a composite number, then there exists a
group of distinct positive integers a,, a», ***y @, such

a; +G‘.J;

that ki )

<2n —1foranyi, j € {1, 2, *+, n}.

Here (x, y) denotes the greatest common divisor of
positive integers = and y.
Proof (1) Let p = 2n — 1 be a prime. Without loss of
generality, we assume that (a;, a,, ==, a,) = 1. If there exists
i (1 <i < n) such that p|a;, then there exists j (# i) such that
pla;. Therefore p1(a;, a;). Then we have

a.—-i-a,- a;
(a;, aj) = (a;, a,‘)

=p =2n—1.

Next, we consider the case when (a;, p) =1, i =1,
2, +++, n. Then p1{(a;, a;) for any i # j. By the Pigeonhole
Principle, we know that there exist ¢ # j such that either
a; =a; (mod p) ora; +a; =0 (mod p).

Casea; =a; (mod p), we have

di TGy di —ai

(ﬂ,‘g Clj) /(a," aj)

=p =2n—1,
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Casea; +a; =0 (mod p), we have

a; +a,—

~ =i s
(a,'s aj)/p o L

That completes the proof of (1).
(2) We will construct an example to justify the statement.
Since 2n — 1 is a composite number, we can write 2n — 1 = pgq

where p, g are positive integers greater than 1. Let
a1 =1y @y =25 ** Ay =Py apy = p +1,
Apt2 = p +39 =iy Wy T pq —P.
Note that the fist p elements are consecutive integers, while the
remainders are n — p consecutive even integers from p + 1 to
paq — p.
When1 <i <j < p, it is obvious that

Bi T e By S ]
(ai,a‘j)“xa: a;“‘a. p n .

When p +1 <i <j <n, we have 2|(a;, a;) and then

a; +a; a; +a

(aiya;)) = 2

L<pg—p <2n—1.

When1 <i < pandp +1 <j <= we have the following
two possibilities:
(1) Eitheri # p or j # n. Then we have

a; +a}
— —1<2n—1.
(a:‘! a-j) pq T A

(i) ¢ = p andj = n. Then

a; +a;' pq
L T8 B i —1,
(a,'n a,') P q< i

That completes the proof.
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@D Leta;, as, **+, ay be 11 distinct positive integers with
their sum less than 2007, and write the numbers 1, 2, -,
2007 in order on the blackboard. Now we define a group
of 22 ordered operations:

The ith operation is to take any number on the
blackboard, and then add a; to it, if 1 <7 < 11 or minus
a; fromit, if 12 <7 < 22,

If the final result after such a group of operations is
an even permutation of 1, 2, -+-, 2007, then we call it a
“good” group; if the result is an odd permutation of 1,
2, ==+, 2007, then we call it a “second good” group.

Our question is; Which is greater? The number of
“good” groups or that of “second good” groups? And by

how many more?

(Remark Suppose xy, x2, ***s x, IS a permutation of 1,
2, ++=, n. We call it an even permutation if [ [ (x; —z;) >0,
i=j

and otherwise an odd permutation. )

Solution The answer is: The “good” groups is more than the

11
“second good” groups by [[ a..
i=1

More generally, we write numbers 1, 2, +*-, n in order on
the blackboard, and define a group of [/ ordered operations:
The ith operation is to take any number on the blackboard, and
then add 6, (b; € Z,1 <i <!) to it.

If the final result after such a group of operations is an
even/odd permutation of 1, 2, *=-, n, then we call it a “good”/
“second good” group. And the difference between the number

of “good” groups and that of “second good” groups is defined as
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f(byy by ==+, by; n). Now let us study the property of f.

Firstly, interchanging &; and &; for any 1 <<i, j </ will not
affect the value of f. As a matter of fact, it only results in the
exchange of the :th and jth operations in a group, and will not
affect the final result after the group’s operations. So the value
of f remains the same.

Secondly, we only need to count the number of “good”/
“second good” groups with property P — a property attributed
to any operation group which keeps the numbers on the
blackboard distinctive from one another after each operation.
We can prove that the difference between the numbers of
“good” and “second good” groups with property P is also equal
to f.

In fact, we only need to prove that the numbers of “good”
and “second good” groups without property P are the same.
Suppose the ith operation of a “good”/*“second good” group
without property P results in the equal between the pth and gth
number on the blackboard (1 < p < g < n ). We change the
following [ — i operations in this way: operations on the pth
number are changed to operations on the gth number, and vice
versa. It is easy to verify that the resulted permutation on the
blackboard of new operation group would be a (p, ¢)
transposition of the permutation of the original operation
group. Then the parities of the two permutations are in
opposite signs. And that means the numbers of “good” and
“second good” groups without property P are the same.

Now, let ay, az, ***, a,, be m distinct positive integers with
their sum less than n. We prove by the principle of

mathematical induction that
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m
fCais @azy ==y Gy —ays —azs ***y —ams n) = || a:. @
i=1

If m = 1, consider a “good”/“second good” group with
property P. It must be in such a way: The first operation is to
take a number fromn —a, +1, n —a> + 2, **, n on the
blackboard, and add a; to it; next operation is to add —a, again
to it. So the number of “good” groups is a,, while that of
“second good” groups is 0. Therefore (D holds.

Assume that @ holds for m — 1. We now consider case m.
According to what discussed above, we may assume that a; <

a; <+ <a,,and

flais @zs s Gms —a1y —ags ***y —ap; n)

= flayy —ass —@ss ***s — @y Aoy Az ***s Ay — Q13 N).

For a group with property P, the first operation must be
done on the last a; numbers on the blackboard; the second
operation be done on the first a, numbers; the third operation
done on the first a; + a3 numbers; ... the mth operation done
on the firsta, + -+ +a,, <n —a, numbers. And them +1 ~
2m —1 th operations will also be done on the first n — a,
numbers. Otherwise the sum of the first » —a,; numbers will be
less than 1 +2 ++++ +(n —a,), a contradiction to property P.

Therefore, the 2 ~ 2m — 2 operations must be done on the
first n — @, numbers, and the result must be an even/odd
permutation of 1, 2, **», ( # —a; ), which corresponds to each
one of a, even/odd permutations of 1, 2, ==, n derived from

original operation groups. therefore

flags —as —@3s ***s —Ams G2y Ass ***y Ay — Q15 1)

=aif(—a2; T3z """ T Qpe Qas A3z "ty Ay N _a|).
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By induction we have

f(_az_- —d3zy """y “Apy oy 3y "ty Aps N _0‘.1)

= f(@zs ass ***y Qms — A2y —QA3s ***y —Am3; N —a4)
m

=H“J-
j=2

That means @) holds for m.
Now taken = 2007 andm = 11 in . Thus arriving at the

1
value of [] ;.
=1

Second Day
0800-1200 January 28,2007

@ Suppose points O and I are the circumcenter and incenter
of AABC respectively, and the inscribed circle of AABC
is tangent to the sides BC, CA, AB at points D, E, F
respectively. Lines FD and CA intercept at point P,
while lines DE and AB intercept at point Q. And points
M, N are the midpoint of segments PE, QF respectively.
Prove that OI | MN.

Proof We first consider AABC and segment PFD. By

Menelaus theorem we have

CP AF BD _

= e B 1

PA "FB "DC
Then

AF | BD

PA =CP 55 * B

_ p—a
= PA+B E—

(We definea = BC, b =CA,c =AB, p =%(a +b6 +c¢); and
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without loss of generality, assumea > c. ) Then we get

PA zm_
a —cC
Further,
PE=PA+AE=22—0  , 230G —a)
==t 8 =
ME — Lpp =2 =@ —a),
2 a —¢C

e . . 2
MA = ME —AE = 2 :)_(P . S T, ..

c a — ¢
MC =ME+Bg =S8 B8] 4y oy D)
a —C a4 — ¢

Then we have
MA « MC = ME?.

That means ME? is equal to the power of M with respect to the
circumscribed circle of AABC. Further, since ME is the length
of the tangent from M to the inscribed circle of AABC, so
ME? is also the power of M with respect to the inscribed circle.
Hence, M is on the radical axis of the circumscribed and
inscribed circles of AABC.

In the same way, N is also on the radical axis. Since the
radical axis is perpendicular to OI, then OI | MN. That

completes the proof.

@D Suppose a bounded number sequence {a,} satisfies

2n+2006 i 1
k == e
ar < 20 Fi Targamer 2 B
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Prove that a, <%, n=1, 2, 3, *-

Proof Leth, =a, — % It is routine to check that
22006
b<2m,n T Pyuide oen, @

We will prove thatb, << 0. As {a,} is bounded, then there
exists M such that b, <M. When n > 100 000, we have

212006 b
k
big % Z} s
22006 1
e ; E+1
=M L Lmr
SR A R
; 2 +2006
<M.1liMm
2 3% g
2
6
<3m,

where [z ] is the greatest integer less than or equal to z.

We can substitute %M for M, and go on with the previous

steps. Then for anym € N we have

which implies that 5, <0 for n = 100 000. Substitute it into @
we get b, < 0 forn = 100 000.

We observe in D that, if for anyn = N + 1, b, < 0 then
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by << 0. That means

b, <Oforn =1, 2, 3, =

This implies that a, <%, n=1,2; 3y -

The proof is complete.

@ Find the smallest positive integer n = 9 satisfying that for

any group of integers a;,» a»s ***» a,, there always exist
i @iys s @ (1 <Kdy <dp <0+ <ig<<n ) andb; € {4,
7;(i =1, 2, *»+, 9) such thatb,a; +bza;, +* +bea;, is

a

a multiple of 9.
Solution Leta, =a, =1, a3 =as =3, as =+ =a; = 0.
It is easy to check that any 9 integers of them will not meet the
requirement. Son = 13, We will prove thatn = 13,

We only need to prove the following statement .

Given a group of m integers a;, az, *** a,, if there are
not three a; , a;,, a;, in them and b, b,, b; € {4, 7} such that
bia;, +byai, +bsa;, =0 (mod9), then eitherm <6or7 <m <
8 and there are a; , a;,» ***y a; in ay, a2, ***y a, and by,
bas *+*y be € {4, 7} such that9 | bia;, +bra;, ++* +bea,,.

We define
A =i |1<i<m,9]ai}s
A, =i |1<i<m,a; =3(mod 9)},
As={i|1<i<m,a; =6(mod9)},
Ay ={i|1<i<m,a; =1(mod 3)},
As ={i |1<i<m,a; =2(mod 3)}.

ThenlA1 |+|Ag |+| A3 |+| A.| |+| A5 |=mand
(1) iff eAzgj E‘A;; theﬂg | 4(1,' +4a_.—;
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(2) ifi € Ay, j € As then one of 4a; +4a;, 4a; +7a; and
7a; +4a; is a multiple of 9 as all of them are divisible by 3 and
they are distinct according to mod 9;

(3) if eitheri, j, # € A,ori, j, € A; then9 | 4a; +
4a; +4a;;

(4) if eitheri, j, k € Ayori, j, k € As then one of 4a; +
4a; +4a;, 4a; +4a; +7a, and 4a; +7a; +7a, is a multiple of 9
as all of them are divisible by 3 and they are distinctive
according to mod 9.
2(1<i<5).

2, | Ay [+] As |<

By the assumption, we have | A; |
If| A, |=1, then | A, |+] A; |

2. Hence

=
<

m =| A, [+]| Ay [+] As |+] A |+] A5 | <6,
Now assume | A, | =0andm = 7. Then
T7<m=|A, |+l A, |+ A; |+] Ay |+] As |<8.
Further,
min{| A, |, | A; |} +min{| A, |, | As |} =3.

From (1) and (2) we know there existi;, iz, ***y is € Ay UA;
UAs UAs(G <ip <+ <ig)andby, by, **+, bs € {4, 7} such
that 9 | b1a;, +bsa;, + - +bea;,.
The proof of statement is complete.
Now, whenn =13 it is easy to verify with the statement,
for any group of integers a;, az, ***y a,, there always exista;, ,
e s aq, (1 <dy <ip <+ <ig<n)andb; €{4,7} G =
1, 2, ===, 9) such thatb,a; +b,a;, ++*+ +bya;, is a multiple of

a;

9. That completes the proof.
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2008

First Day
0800-1230 January 19,2008

@» Let AABC be a non-isosceles acute triangle, and point O
is the circumcenter. Let A’be a point on the line AO such
that /\BA’A = /CA'A. Construct A’A, | AC, A'A, |
AB with A, on AC, A, on AB respectively. AH, is
perpendicular to BC at H,. Write R, as the circumradius
of AHA,AA,. Similarly we have Rz, Rc. Prove that

N ISP, SR S )
R TRs R R

where R is the circumradius of AABC.
Proof Firstly we claim that A’, B, O, C are concyclic
points. Otherwise, extend AO to intersect the circumcircle of
/ABOC at point P which is different from A”. We get

ZBPA = /BCO = ZCBO = ZCPA.
Then APA'C 2 APA'B, and A'B = A'C. So AB = AC and

that is a contradiction since AABC is not isosceles. So

/BCA’ = /BOA' =180°—2./C,

and Z/A'CA, = £C.

Further, we have

HaA
AC

AA,

= sin Z/C = cos LA,AA" = AR

and



China Mathematical Olympiad 55

ZA'AC = /A AH, = g — /B.

So AA,AH, «» AA’AC. In the same way, AA H A o
ANA'BA. Then ZA,H,A = ZACA " and ZA H,A = ZABA'.
Consequently,

éAlHAAQ == 27( = ZAQHAA = ZAIH,\A
=2x — LACA' — /ABA’
- . .
= ZA +2(5 — 2A)

=x— LA,
We get
A R . 2R — 2R 0
R, AA; AA; AA”’

2sin LA HA A, sin /A

The last equality holds since A, A,, A", A, lic on the same
circle with AA” as the diameter.

Now, draw AA” | A’C with point A” on line A’C. Since
JACA” = /A'CA, = /C, we have AA” = AH,. Then

' AA” = AH,
A = AR Bnle = 25
cos /A BCcos /A’
From @D, @ we get
1 __ BCros 728 _ cos LA
R,ﬂ, SMB(: Rsin LB sin LC

= %(1 —cot £B cot LO).

In the same way
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T _ L
B R(l cot /C cot LA)
and
1 =i(1—cot ZA cot /B)
Rc R '

Notice that
cot LA cot /B +cot £B cot £C +cot £C cot LA = 1.
We then have

{3,413
R RsTRe R

This completes the proof.

@» Given an integer n = 3, prove that the set X = {1, 2,
3, »=*, n? —n} can be divided into two non-intersecting

subsets such that neither of them contains »n elements a; ,
ass 'y a, witha; <a, <+ <a,anda; QM for

allk 22, ook F) /- _1.
Proof Decfine

Sk :{kz _k+1s kz _k +2r "t kz}s
T;_. ={k2+1| k2+29 bt k2+k}-
n— n—1
LetS = kg:Sk » T = ;291'11*' We will prove that S, T are the
required subsets of X.

Firstly it is easy to verify thatS N T = JandS UT = X.

Next we suppose for contradiction that S contains elements
@iy azs ***y a, witha, <a, <+ <a, anda, éa*"i;a*“ for

k =2, =, n —1. Then we have
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Ap —Qpq <Qp —Qps B =2, , n—1. @

Assume thata, € S;, we havei <n —1, since | S, | <n.
There exists at leastn —| S; | = n —i elements in {a,, as, ***,
a,t N (Sis U=+ US,1). Applying the pigeonhole principle,
we get that there is an S; (i <<j <<n) which contains at least two
elements ina; , a»» ***y a,. That means there exists a, such that
aps arpn € S; andag € S; U - U Sj.

Then we have
Apt1 — Qg €| S;‘ =1 =j—1,ar —ap =| Tj-—1 H‘1 =uls

That means agy —ay << ax —as— » contradicting (.
In the same way, we can prove that T does not contain a; ,
azs ***» a, with the required properties either. This completes

the proof.

@D Given an integer n > 0 and real numbers z; <z, <+ <

Ty Y1 =y =1 =1,, satisfying Eir,- = Eiy,-. Prove
=1

that for any real number a, >, z:[ia] = >, y.[ial,
i=] =1

where [ 8] is defined as the greatest integer less than or
equal to S.
Proof ] We need the following lemma.
Lemma For any real number a and positive number n , we

have

n—1

>, lia] <5 [nal. @

The lemma is obtained by summing inequalities
[ia] +[(n —1)a] < [na]

fori =1, 2, *», n —1.
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Return to the original problem. We will prove it by
induction. Forn = 1, it is obviously true.

Assume that for n = k, it is also true. Now consider n =

k +1. Lcta_g =33 +%I§—-]s b,‘ =M +%yk+l for: = 1y 2, ey

k. Then we havea, < a; < <a;, by =b, =+ = b, and
& I3 &

D s, = Eib,—. By induction we get »)a;[ia] = Eb,—[z'a].
i=1

i=1 i=1 =1

In addition, x4y = yup. Otherwise, if i < Yy
we have
Ty STy S0 T < Yen TS Y2 S ).
k1

k1
This contradicts Y iz, = >, iy:. So we have

=1 i=1

ix;‘[ia] = iai[ia] = Zp {[(k +15a] _% ;[ia]}

S weis {[(k +1)a] —% g[ia]}

k1 k

= 2 wilia] — 2 b:[ial.

=1 =]
k1 k1

That means Ex,-[ia] = Ey;[ia].
i=1 i=1
By induction, we complete the proof for any integern > 0.

Proof [ Definez;, = x; —y, fori =1, 2, *-, n, we have

7y Lz, < < z,and E iz; = 0. We only need to prove that
=1

Ezi[ia] = 0. @
=1
Let A =218 Do =23 — 21y "y Ny =20 — Zn—t. Then T =

D16, <i<n), and
=1
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0= Dim = D3 Doy = 2oy D
i=1 i=1  j=1 =1 i=j
So we have
& == 208 2if i ®
j=2 i=j i=1

Then
ng[sa] = g[ia] EAJ- = ZA,- g[m]
= JZ;;A,- g[ia] —gaj(gi/ gi)g[ia]
- EAJ- Zz ; (g[ia]/ Zz —Z;Efa]/ 2,:)

Then, in order to prove 2 we only need to prove that for any

2 < j < n, the following inequality holds
SiLial/ D% = D Liad/ i @
i=j i=j i=1 =

But

@ o g_[m]/ 21 > E[aa]/ lez
e 3lal] 3i > Sl T

Then we only need to prove, for anyk =1,

k1 k+1 L3

k
Dliad/ i = Dlial/ D,
i=1 i=1 i=1 i=1
that is equivalent to prove

[k +Dalsk/2= i[icz]

&

& > ([ +Del —Lia] =[Gk +1—i)a]) >0.

i=1
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Note that, [x +y] =[x]+[y]holds for any real numbers
x, v, hence @ holds. The proof is complete.

Second Day
0800 - 1230 January 20,2008

@D Letn > 1 be a given integer and A be an infinite set of
positive integers satisfying: for any prime p{n, there exist
infinitely many elements of A not divisible by p. Prove
that for any integer m > 1, (m, n) = 1, there exists a
finite subset of A whose sum of elements, say S, satisfies
S=1(modm) and S =0 (mod n).

Proof ] Suppose a prime p satisfies p* | m. Then from the

given conditions, there exists an infinite subset A, of A such

that p is coprime to every element in A;.

By the pigeonhole principle, there is an infinite subset A,

of A, such that x = a (mod mn), for each element x € A,

where a is a positive integer and pfa.

Since (m, n) =1, we have (p" , ?;:?) = 1. By the Chinese
Remainder Theorem, We know that

x =a '(mod p*),

o
. mn
T = O(mod b )
have infinitely many solutions. Among them we take one as x.
Next define B, as the set of the first  elements in A,, and S,
as the sum of all elements in B,. Then we have S, =ax (mod

mn). By @ we have

S, =azx =1 (mod p*), S, =0 (mod

mn)

prx
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Suppose thatm = pfi---pi+, and for every p,; (1 <i <k —
1) select a finite subset B; of A, where B; CA\B, U+ UB,,,

such that S, , the sum of all the elements in B, , satisfies

Spf =1 (mod pfi), Sp’_ =) (mOd :-f

— @

k
LetB = -L‘{B* , whose sum of elements then satisfies S =

k
> S:. According to @, we have S =1 (mod p¢:) (1 <i <k),

i=1

and S =0 (mod n). So B is the required subset, and the proof is
complete.

Proof [ Divide every element in A by mn, and let the
remainders which occur infinitely be (in order) a1, a2y ***» ax.

We claim that
({Z1s Qs “* s Qg m)=1. ®

Otherwise, assume that p | (ays a2s ***s @z» m). Then p }n,
since (m,n) = 1. By the given conditions we know that there
exist infinitely many elements of A not divisible by p. But by
the definition of @+ @25 ***s a;» the number of such elements
are finite. Then by contradiction, @ holds. Consequently,
there are x,, z;, ***, x4, ¥, satisfying a1z + axy + == +
arxy —ym = 1, Choose a suitable positive integer » such that

rn =1 (mod m). Then
ai(rnxy) ta:Grnz,) + +a,Ornzy) = rn +rmny.

We select in order rnx; elements from A such that the
remainders by mn area;(i =1, 2, =+, k). The set of all these

elements is acquired.

@D Find the least positive integer n with the following
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property: Paint each vertex of a regular n-gon arbitrarily
with one of three colors, say red, yellow and blue, there
must exist four vertices of the same color that constitute
the vertices of some isogonal trapezoid.
Solution We claim that the least positive integer n is 17.
Firstly we prove that n = 17 has the required property. By
contradiction, assume that we have a painting pattern with
three colors for the regular 17-gon such that any group of 4
vertices of the same color cannot constitute an isogonal trapezoid.

17=1
3

same color, say yellow. Connecting these vertices one another

As [ ]+1 =6, there exists a group of 6 vertices of the

6
with lines, we get (2)= 15 segments. Since the lengths of the

segments have at most [g} = 8 variations, one of the following

two cases must exist:

(a) There is a group of three segments with the same
length. Since 3}7, not every pair of the segments in the group
has a common vertex. So there are two segments in the group
which have no common vertex. The four vertices of the two
segments constitutes an isogonal trapezoid, and this is a
contradiction.

(b) There are 7 pairs of segments with the same length.
Then each pair must have a common vertex for its segments.
Otherwise, the 4 vertices of the segments in a pair with no
common vertex will constitute an isogonal trapezoid. On the
other hand, by the pigeonhole principle, we know that there
are two pairs which share the same vertex as their segments’

common vertex. Then another four vertices of the segments in
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these two pairs constitute an isogonal trapezoid. This leads to a
contradiction again. Son = 17 has the required property.

Next we will construct painting patterns for n << 16, which
do not have the required property. Define A,, A,, ==*, A, as
the vertices of a regular n-gon (order in clockwise), and M,
M,, M; as the sets of vertices with the same color — red,
yellow and blue respectively.

When n = 16, let

Ml = {As, Ag, Ass Auss Am},
Mz i {Aas Aas A‘H Ans A]S}s
M3 =T {A1! Azs A-H A99 Ams A:z}-

In M,, it is easy to check that the distances from A, to the
other 4 vertices are different from each other, and the latter 4
vertices constitute a rectangle, not an isogonal trapezoid.
Similarly, no 4 vertices in M, constitute an isogonal trapezoid
either. As to M;, the 6 vertices in it are just vertices of three
diameters. So any group of four vertices that constitutes either a
rectangle or a 4-gon with its sides of different lengths.
When n = 15, let

M, = {Au Azy Aa; Ass As}s
Mz = {Aﬁv Au- A139 Auv A15}9
MC‘: - {A‘n A?- Amv Anv Alz}.

It is easy to check that no four vertices in each M; (i =1, 2, 3)
that constitute an isogonal trapezoid.
Whenn = 14, let

M| — {An A}! Ass Alli! Au}s

Mz = {Au Asa A‘H Ans AI2}$
Ms — {Azs Am Ao; AIS}-
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This can be verified easily.
When n = 13, let

M] — {A59 Aﬁ! A‘H Am}v
Mz = {AI! Aas, Ail! AIZ}‘!
M3 = ‘{sz A39 Au Aqe A13}.

This can be easily verified too. As in this case, we drop Aj;
from M;, then we arrive at the case for n = 12; further drop
Ay, we have the case n = 11; and further drop A,; , we get the
case n = 10.

When n << 9, we can construct a painting pattern such that
| M, | <4 (i =1, 2, 3), to ensure that no four vertices of the
same color constitute an isogonal trapezoid.

By now, we have checked all the cases for » < 16. This
completes the proof that 17 is the least value for n to have the

required property.

@ Find all triples (p, g, n) such that
qn+2 — 3n—|-2(mod pn)’ pn-v-.'r! e 3»'{—2 (mod qu)

where p, g are positive odd primes and » > 1 is an integer.
Solution It is easy to check that (3, 3, n) (n = 2, 3, =)
satisfy both equations. Now let (p, g, n) be another triple
satisfying the condition. Then we must have p %#q, p #3, q #
3. We may assume thatg > p =5.

If n =2, theng? | p* —3*, orq® | (p* —32)(p* +3?). Then
either ¢ | p*> — 3% or ¢* | p* + 3%, since g cannot divide both
p? —3% and p? + 3°. On the other hand, 0 < p? — 3% < ¢,

%(jﬁ2 +3?) << p? < ¢*. This leads to a contradiction.

Son >3. From p* | ¢ — 32, ¢" | p™% — 32, we get
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pn | prr-.‘2 _'_qn‘:-E ‘_37!4.*2’ qn | pn‘+2 _'_qn+2 _31'!+2.
Since p < g, and p, g primes, we have
pnqu | pﬂ—il +qn—2 _3rx+2. CD
Then p"g" < p™? +q"™2 — 3" < 2¢"*2. That means p" < 2q°.
Asg" | p™2? —3"2 and p >3, We haveg" < p™? —3""2 <
", and consequently g < p™. Since p" <2q¢%, we have p’ <

2p%n <p3"‘3. Son <3 +%. and we getn = 3. Thenp® | ¢° —

3%, ¢ | p° —3°.

From5° —3° =2 X 11 X 131, we know p > 5; from p°
| ¢° —3° we know p | ¢° —3°. By the Fermat’s little theorem,
we getp | ¢ —3* 1, Thenp | ¢®# P —36 20,

If (5, p —1) =1, thenp | ¢ —3. From

q5_35
g =3

=qg*+q*e3+q* 3 +q+3 +3*
=5 X3*(mod p)

q5_35
g —3

and p =5, we get p \ . Sop® | ¢ —3. Fromq® | p° —3°,

we getqg® <p® —3° <p® = (p*)% <q3. This is a contradiction.
So we have (5, p —1) # 1, and that means5 | p —1. Ina
similar way, we have5 | ¢ — 1. As (g, p —3) = 1 (since g >

5 _ =258
p=7)andq® | p° —3°, we know that ¢° ;;7_3 Then

5 —b
q3=-.<_‘pp_g =p4+p303+p2032+p033 +34.

From5| p —1and5|q —1, we get p =11 andq = 31. So

(3 (VG 6))
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ps +q5_35 qz 1 1 %
FE 1= <53 4+ (5 r <l
r’q’ ¢ P g (8) 31%

But this contradicts O which says p*¢® | p° +q¢° —3°.
So we reach the conclusion that (3, 3, n) (n = 2, 3, )

are all the triples that satisfy the conditions.
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@® Let AB be a chord of circle O, M the midpoint of arc
AB, and C a point outside of the circle O. From C draw
two tangents to the circle at points S, T. MS N AB =E,
MT N AB = F. From E, F draw a line perpendicular to
AB, and intersecting OS, OT at X, Y respectively. Now

draw a line from C which intersects the circle O at P and
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Q. Let Z be the circumcenter of APQR. Prove that X,
Y, Z are collinear.
Proof Refer to the figure, join points
O and M. Then OM is the perpendicular
bisector of AB. So AXES «x» AOMS,
and thus SX = XE.

Now draw a circle with center X

whose radius is XE. Then the circle X is
tangent to chord AB and line CS. Draw
the circumcircle of APQR, line MA and
line MC.

It is easy to see ( AAMR «» APMA etc)

MR « MP = MA* = ME « MS. )
By the Power of a Point theorem,
CQ - CP =CS2. @
So M, C are on the radical axis of circle Z and circle X. Thus
ZX | MC.

Similarly, we have ZY | MC.

So X, Y, Z are collinear.

@» The rational number x is called “good” if x = g =15

where p, g are coprime positive integers, and there are «
and N such that for every integern = N,

1

| {z"} —«a |€m»

where {a} =a —[a], and [a] is the greatest integer less

than or equal to a.
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Find all “good” rational numbers.

Solution It is obvious that any integer greater than 1 is

“

good”, we will prove that every “good” rational number x (>1) is
an integer.

2
q
[2"]. Then if n = N, we have

Let z = >1be a “good” number. Denotem, =[x ] —

| (x — 1Dz —m, |
=| 4} —{x*} |
| {27} =& |+ {7} == |

1

P +q

<

In view of (z — Dz" —m, = q%, where y € Z, and
ged (y, p*) =1, So

| (x — Dz —m, |<;

p+q
Thus,
| gm 1 — pm,, |
=| gl{x — 1)z —m.u) —2((z—1Dx* —m,) |
< g | 2 =1# i |+p | &=102" =, |

£ _ 4

i
p+g Pty ’

<

Therefore m ,+, = g m,s n =N.

k
It follows that m .. = i_* m,, B € N*, n = N. Now let

k —+ oo and n large enough such that
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iy e — 1Dz —1 =0

We can conclude thatg = 1. Sox (> 1) is an integer.

@)D There are 63 points on a circle C with radius 10. Let S be
the number of triangles whose sides are longer than 9 and
whose vertices are chosen from the 63 points. Find the
maximum value of S.

Solution Let O be the center of circle C, a, is the length of a

regular n-gon A;A,--+A, inscribed in ©O. Thena¢ = 10 > 9,

& <1{)><27“<1n><@ <9,

(1) Let A;A,--Aq be a regular 6-gon inscribed in ©O,

then A;A.y = as > 9. So we can choose a point B; in A;A

such that B,A i1 > 9. Then LB,'OA,'H = 27“: (A'; = A| ) ] and

ZAOB; = /AOA; — Z/BOAs; < %“ ~ 27“ < 27“

It follows that A;B;, <9 (i =1, 2, -, 6).
In each of ﬁ. ’ @2, 4@. choose 11 points, and in

each of m4 4 P’;?B, ) mﬁ ,» choose 10 points. We obtain a set
M which has 63 points on the circle C. It is easy to see for M

the value of S is S, where

5 =(2)><113 +(2)-(?)x112 X 10

¢(?) (2)x 11 % 10 +(2)>< 107
= 23121,

So the maximum value of S is not less than S,.

(2) We prove that the maximum is S,. We need three
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lemmas.
Lemma 1 For P on circle C, we call the arc APB“an arc

4
=

Now for every given n points on circle C, there is a point P,

of P”, if P is the midpoint of arc A—EE, and ZAOB =

+ ; . ;
such that there are [n 5} points of the given n points on the

6
“arc of P”.
Proof: Let A be one of the given =
points, and an “arc of A” be AT—AE&.
Now suppose A,, As;, ==+, A; are on the

arc mﬁ(not including A), and A|A, =
AA; =+ = AsA, (see the figure). So

éA,‘OA;—.] = 277(, 1= 19 29 ] 5.

If there is a point P; (of the given n points) on AEI ,

then all the points (of the given n points) on AI, are on “an

arc of P;”. So the given n points are on 6 “arcs of P,”

(including “arc of A”). This shows that there are [n g . J—H —

[HIS

one of the given n points.

J points of the given points on an “arc of P”, where P is

Lemma 2 Take the arc Aﬁ(, arbitrary on the circle C
with radius 10, where Afrgﬁﬁ is % of the perimeter. Then take

any 5m -+ r points on the arc A;BA, (m, r are non-negative
integers and 0 << r <5 ). Prove that number of lines from the

given points whose lengths are more than 9 is at most

10m? +4rm +%r(r —1),
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Proof : Divide ATIHBEE. in five equal parts, where the corresponding
points are A,, A;, Ay, As (see the figure), then the length of

3.
7

distance of any two points is not more than a; << 9. Suppose there

Am, is exactly - of the perimeter (: = 1, 2, 3., 4, 5), and the

are m; given points on the arc A;A;4; , then the number of lines

from the given points whose lengths are more than 9 is at most

[l = E MN ;o (D
1<i<j<5
where
my, +tm, ++ms =5m +r. @

Since there are finitely many non-negative integer groups (m,
Mas M3, My, ms), the maximum value of / exists. Now we

prove that when the maximum is attained the inequality
| e —m; |1, (A<<E <F <5)s

must hold.

In fact, if there exist i, j (1 <7 < j < 5) such that
| m; —m; | =2 when the maximum is attained, we can suppose
my —m, = 2. Then let

mi=m; —1,mh=m,+1,m' =m,
and the corresponding integer is /', we will have
mitmh=m, +m,,
m:+m’2+m;+m:+m’5=m1 +m, +msy +myg +ms,
U —1 = (mimh—mm,) +[(m+mb)
—(my +my)]Gms +my +ms)
=my; —my;—1=1.

Contradiction !
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Therefore, when / reaches the maximum value, the number of
m +11s r and the number of m is5 —r . Thus, the number of
lines from the given points whose lengths are more than 9 are at
most

(D) m + 1> +(’1')(5 )om+0m +(° )
= 10m? +4rm +%r(r s U

Lemma 3 Take arbitrary n points on the circle C with
radius 10 to form set M, where n = 6m +r (m, r are non-
negative integers, 0 < r << 6). Assume that there are S,
triangles whose vertices are from M and each side is longer than

9, Prove
S, <20m?® +10rm?* +2r(r — Dm +%r(r —1)(r —2).

Proof: We shall prove by mathematical induction.
Whenn =1, 2, S, =0. It is true.
Suppose whenn =k, it is true and set £ = 6m +r (m, r arc

non-negative integers, 0 << <6 ). Then
S, <20m?® +10rm? +2r(r — Dm +%r(r — 1) Cr-—2);

From Lemma 1, whenn = £ + 1, the 2 + 1 given points must
include the point P, where at least [Lé-l—S] =m + 1 given

points are in the %arc Aﬁﬁ. And the distances of such points

to P are << PA, = PA; = a; < 9. Hence, there are at most
(k +1) — (Gn +1) = 5m +r given points whose distances to P

are more than 9, and such points are all in the other
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%arc Aﬁﬁ without P. From Lemma 2, the lines from such

points whose lengths are more than 9 are at most
10m? +4rm + %r(r =N

(From Lemma 2, when » = 5, it is 10(m + 1)?, which is also
true.) Thus, the number of triangles whose vertex is P and

each side is larger than 9 is not more than
Sy = 10m? +4rm +—2r(r —1).

Without P, there are & = 6m +r given points. Let there be S;
triangles whose vertices are from the k2 points and each side is

larger than 9, then using mathematical induction, we get
S <20m® +10rm? +2r( — Dm +%r(r =13 (r—2).

Furthermore
SHI = S,§ +Sp

< 20m? +10rm? +2r(r — m +%r(r —1)(r —2)

+10m?* +4rm +%r(r -1
=20m> +100 +Dm? +2r(r +1)m

-l—%r(r—ﬂ(r-l—l).

which means the casen = £ +1 = 6m + (r +1) is also true.
On the other hand, whenr» =5, thenm =& +1 =6(n +1) and

Si1; can be simplified to S,.; = 20Gm +1)*, which is also true.
Therefore, we have proved Lemma 3.

Now considering the original problem, we have
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n =63 =6 %10 +3. It follows from Lemma 3,

S <20 X10° +10 X102 +2 X3 ><2><10+% X3 %2 %1

= 23 121.

Thus, Spx = 23 121,

Second Day
0800-1230 April 1,2007

@» Find all functions f:Q"— Q' such that

Fle) +Fty) 0y G = 7{% )

Where Q" = {q | ¢ is a positive rational number}.
Solution (1) Prove that f(1) = 1.
Puty = 1in @, and write /(1) = a. Then

I
flx) +a +2zf(x) = fi(x D
Thus
- f(x)
P = i e 2
Hence
_a _ 1
f(2 — e
"I,
_ 4 . 1
£ 5 .. T 5+4+4a’
4
f(4) = 1
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On the other hand, we putx =y = 2in D, then

_f@ _
2£(2) +8f4) 5D N
By @. we have
L. &
3 T ety

Solving the equation, we havea = 1,1i.e. f(1) = 1.
(2) Prove that

f(x)

HE+tn) = o o) e 11

n=1, 2; e ®

Firstly, according to @ we know that @ is true forn = 1.

Now suppose @ is true for n = k. Then

: - flx +k)
e e e R

~( £ ) / ((1 +2(z +EDf(2)

@ T2 f@ F1// & T2 f ) +1 +1)

_ fx)
(R +1)2 42k + D) f(x) +1°

Hence the result follows by induction.

From @ we have

_ F _ 1
T+l = e O 1 G 1
Sof(ﬂ) Zi')Q n=1,2, .
o

(3) Prove that
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In fact, by lettingr = % in @, we have

L di5]
)- (n? +2f (7 )+1

b

and by setting y = % in @, we have
5 -
f(.r.)+f(x)+2— ;

So

f(n)-i—f(%) =7=n2+2+%.

Consequently, f(n) = 12 1mp11esf( ) o
(4) Prove that if g =£. ged(m,n) =1, m, n €N", then
fl@ =

Form, n € N*, ged (m, n) =1,putx=n,y=%in®,

we have

/

+ 2=

3|,_1‘-__./
-
.

£(G) e + 2 (5) -

= d
Put x =it @, we get
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So

Now we have

n n? +m? m\? 1
Mo =f)=~ =) ~F
o
Finally, it is easy to verify that f(z) = ﬁ satisfies the

condition. So f(x) = iz is the answer.
b iy

@&» Letz,, -+, z,(n =2) be real numbers such that
i=1

and

B = max |x; —x; | #0.
Ii<j<n

Prove that for every n vectors a1, ***» a, on the plane,
there exists a permutation (&, ks, =+, k,) of (1, 2, =+, n)
such that

n
‘ Zxkiﬂ’i
i=1

Proof let|a;: | = max | @; |. It is sufficient to prove that

1=i<n

AB
e . oo L S 5
=2A +B ins lail.

max
Ckys oo R, VES,

n AB
;I&ia.—| >2A iy | @ |5

where S, is the set of all permutations of (1, 2, ==+, n).

Without loss of generality, assume
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|z, —x; |= max |z; —x; | =B,
1=i<j=n

|an —a1 |= max |a; —a:l.
I=i<lj=n

For the two vectors
,31 =Xra1 TTzaz T T Tp@am T Taas

B2 = zwa1 tx202 +* T Zp1an1 txia0s

we have
. o %
o, A o ;nia, =max{| B |, | B2}
>2( B |+ 82 1
>1 18—
> 2

:% | Tyl q +Iuﬂ1. Ty T Ialy
= 21—z [+l a1 ~au
=%—B L@ —au s )

Now suppose | @, — a1 | = x | ax |. Using the Triangle

Inequality, we obtain 0 <z < 2. So () becomes

n

Z%Bx|ak|- )

Tya;

i=1

max
Ckyo s b DES,
On the other hand, consider the vectors

71 = Z1a1 T 2202 T T Zpg@u +Laaa

Y2 = Zzay T xszez T T e T 2ian

Yn = Ty +.I,'102 + Seae +Iu—23n—l +Iu—lan-

Then we have
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ZI.& a

=1

max

= max | 7; |
(ky+ oo b, IES,

1=i=n

:B?(' ol ol o W

% | #1 T2+ % |
=é|a1 e by |
n
-4 nay — >, (as —a;)
7 ik
Zé(ﬂ | @ |—E | as —a; |)
7 7k
%(ﬂ las |—Cr —1) | an —a1 |)
=é lar |l—n —Dzx |lar )
n
=A(1-2 ) s . ®

From @ and @), it follows that

Zx&a,‘ >maX{B ,A( ;11)}|a&|

i=1
Broartia(i-24%). 8
n

max
(kyy w0 B IES,

22 = Bn zlﬂ‘kl
A.n_ e >
n 2
- oa+B-24A
n
AB |
Z5A 1B It

@» Let n be a positive integer, set A < {1, 2, ***, n}, and for
everya, b € A, lem (a, b) < n. Prove that

| A |<1.9vn +5.
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Proof Fora € (Vn, v/2n |, lem(a, a +1) =a(a +1) >n, so
AN Wa, VIl |< 562 -V +1.

Fora € (/2n, +/3n ], we have
lem(a, a +1) =ala +1) >n,

lem(a +1, a +2) =(a +1)(a +2) >n,

el a2 2%&((: 1395 S,

So
| AN V2n, V] |<$63 V2V +1.
Similarly
| AN En, 20n] | < 6E—V3) - n +1.
Hence

AN 2Vl | <V +562 =D Vn +5W3 —2) /n
+4GF —3)Vn +3
= (1+92 4B +3,

n
k41"

lem(a, b) = as = bt, wheres, t € N*, Then

Letk € N*, suppose a, b € ( f), a > b, and

B B o
(a, b) (a, b)

" a b - b
Since ged (———(a’ 5 G, B b)) 1, so @l It follows

that
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ab ab
=
(av b) /a —b

lem(a, b) =as =

Therefore, |A n k +1 :H <1

<2Jn < . Then

il

Suppose T € N* such that T

AN @, all < ZZ)\ An (2
L.

By the above arguments, we arrive at

A< ( - f+1f}F+3<19J_+5

2008

First Day
0800-1230 Mar 31,2008

@» In triangle ABC, we have AB > AC. The incircle w
touches BC at E, and AE intersects w at D. Choose a
point FF on AE (F is different from E), such that CE =
CF. Let G be the intersection point of CF and BD.
Prove that CF = FG.
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Proof Referring to the
figure, draw a line from
D, tangent to w, and the
line intersects AB, AC,
BC at points M, N, K 8%
respectively.

Since
ZKDE = /AEK = /EFC,

we know MK // CG.
By Newton’s theorem, the lines BN, CM, DE are
concurrent.

By Ceva’s theorem, we have

BE CN , AM o D
EC "NA "MB ’

From Menelaus’ theorem,

BK  CN ,(AM i ®
KC "NA "MB i

D + @, we have
BE « KC = EC » BK,
thus
BC « KE = 2EB + CK. @
Using Menelaus’ theorem and @), we get

CB ED FG _CB EK FG _2FG

1=BE'DF'GC “BE'CK'GC — GC*

So CF = GF.

@&» The sequence { z, } is defined by z, =2, x5 =12, z,» =
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6x,41 —x,»n =1, 2, +=-. Let p be an odd prime number,
and ¢ be a prime number such that ¢ | =,. Prove that if
g #2,theng =2p —1.

Proof It is easy to see

iy =L (B 4B = (B =TI, 7 =1y 2y 5,

22

Let a,, b, be positive integers and a, + b, v2 = (3 +2/2)".
Then

ay, _'b,,ﬁ — (3_2‘./5)”9

SO0x, =b,y a2 —2b2 =1, n =1, 2,

Suppose ¢ # 2. Since ¢ | x,, thusq | b,, so there exists a
term in {b,} which is divisible by q. Let d be the least number
such that ¢ | £,. We have the following lemma.

Lemma For any positive integer ny q | b, if and only if
d | n.

Proof: Fora, b, ¢, d € Z, denotea +b+2 =c +d 2 (mod q)
asa =c¢ (mod ¢g) and b =d (mod g).

Ifd | n, writen = du, then

an +b,42 = (3 +2/2)% =a%(mod q),
so b, =0 (mod g).
On the other hand, if g | b,, writen =du +r, 0 <r <d.
Suppose r =1, from
a, = (3+2/2)" = (3 +2/2)%* « (3+2/2)"
=a%(a, +b,4/2) (mod q),
we have

a4 b, =0 (mod q). @
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Buta} —2b3 =1, andgq | b, ; sogta? . Since q is a prime,
therefore gtay, and (g, a4) = 1, From () we have q | b4, , it
contradicts the definition of d. So r = 0, and the lemma is

proven.

q
Now, as ¢ is a prime, So g I( ).i =1, 2y =¥y g—1.

L

Using the Fermat’s little theorem, we have

3* =3 (mod ¢g), 2* =2 (mod g).

a1
N

Asq #2,5027 =+1 (mod ¢), we get

G+2/2r =3 ()3 /2y

i=0 i
=37 4+ (22)*

— 31 42¢.2%.2
=3 +2/2 (mod g).

By the same argument, we have
(3+2y2)7 = (3 +£2y2)" =3 +2/2(mod ¢).
So
(ag—1 +42b2)(3 +242) =3 +2/2(mod q).
Thus,

{3&,,2_, +4b,2 - =3(mod q),
2a24 +3b24 =2(mod q).

We know thatq | 6,2,

Since g | b,, from the lemma, we haved | p. Sod € {1,
ptsand if d = 1, then ¢ | b, = 2, contradiction! Sod = p,
henceq | b2—. Sop | ¢> —1,thusp | g —1orp | ¢ +1. Since
g —1landg + 1 are even, sog =2p — 1.
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@D Every positive integer is colored by blue or red. Prove
that there is a sequence {a,} which has infinite terms,
and a; < a, < -+~ are positive integers, such that a,,

a‘—;az; as, %, as, -+ is a positive integer
sequence with the same color.

Proof We need three lemmas. Firstly, define N* as the set of

all the positive integers.

Lemma 1 If there is an arithmetic progression having

infinite positive integer terms with the same color, then the
conclusion holds.
Proof: Let ¢; < ¢, < == < ¢, << +- be a red arithmetic
progression of positive integers, we can seta; = ¢y (1 =
1, 2, 3, *=+) to obtain a sequence such that the condition
holds.

Lemma 2 If for any i € N", there exists a positive

4
integer j , such that i, F 3 J , j are of the same color, then the

conclusion holds.

Proof: Leta, =1, and a, be red. Since there existst € N* such

+
thata,, ¢ > & » k have the same color, so we can seta, = k.
In the same way, we can have a sequence of red numbers
satisfying
+
a <‘% <a; <‘“—;”‘-‘ <as <.

Lemma 3 If there is no arithmetic progression satisfying

the condition of Lemma 1, and there exists i, € N* , such that

; . By ;
Joreveryj € N*, iy, UT}, j have dif ferent colors, then the
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conclusion holds.
Proof: We can suppose i, = 1, otherwise using N’ = {ni, |n € N* }
in place of N* , will yield the same result.

Leti, = 1 be a red number. Then we have the following
condition: For everyk € N*, k =2, k and 2k — 1 cannot be
both red. @

Since there is no arithmetic progression having infinite
terms with the same color, therefore there are infinite terms of
blue colored numbers of different parities in N*. We prove
there is an infinite sequence of odd numbers of blue color
in N*.

Let a, be a blue odd number, and suppose odd numbers
a; <ap, <<+ <<a, satisfy that

iy 'Jl_az

2

an,— i B Ay

a|< 2

<Tilhg <o L@y < < a,

are all blue. Now we prove there exists an odd number a,.., €EN" .,

+ Gt

2
(1) If for every: € N*, the numbersa, + i, a, + 2i

such that %= and a,+, are blue. @

have different colors, and there is noa,, satisfying @, then

Gy T Qpii
2

blue. ®

Since there is no arithmetic progression with infinite terms

for a,+y > a,, numbers and a,-; cannot be both

of the same color, there must exist infinitely many red and blue
numbers in N* . Leti € N* such thata, +i is red, thena, +2i
is blue. Writea, = 2k +1, we know 2k +1is blue, 2k +17 +1is
red, 2k +2i + 1 is blue. Using @, we know that 4k +2i +1(=
22k + ¢ + 1) — 1) is blue. Similarly from @, 3¢ + i +
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1(= 2k +1) + (4 +2i +1)
2

2i +1(=2(3k +17 +1) —1) to be blue, and so on. Consequently,

) is red. From O we get 6¢ +

oo

we have an arithmetic progression {2nk + 2i + 1}/% of blue
numbers, contradiction! Hence there must be a number a,
satisfying @.

(2) Suppose there isi € N*, such thata, +: and a, +2i
have the same color. Leta, = 2k + 1.

Firstly, if a, +: and a, +2i are blue, thena, =a, +2: ,
satisfying @.

Secondly, if a, +1 and a, + 2i are red, then from (D we have
4 +2i +1 (=22 +i+1) —1) and 4k +4i +1 (=2(2% +2i +

_ @+ + 4k +4 —H))
2

are blue, then a,;; = 4k + 4¢ + 1, hence satisfying @,
otherwise, the number 6k +4: +1 (=2(3k +2i +1) — 1) is
blue, then a,., = 6k +4i + 1, satisfying @. Hence proving

1) —1) being blue. So if 3% +2i +1 (

Lemma 3.

Therefore combining Lemmas 1, 2 and 3, we are done.

Second Day
0800-1230 April, 2008

@» Letn € N', n >4, andG, = {1, 2, *», n} . Prove that
there is a permutation P,, P, ***, P»_,,, where P; <
G"9 IP, |22. 1 =1y 25 o 2% —n—1, such that

|P,‘ﬂPH.]|=2|3'=1,2v"'92,‘_n_2. CD

Proof Our proof will require the following lemma.

Lemma Forn € N', n = 3, there is a permutation Q, ,
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Q:s s Quoyy whereQ; SG,, | Qi =1, 1<i <2" —1, such
that

Qt — {1}9 IQ: ﬂQ.-+1 |=19 =2 =25 QZ"—l ZG,,.
@

Firstly, for n = 3, the permutation
{1}, {1, 2}, {2}, {2, 3}, {1, 3}, {3}, {1, 2, 3}

satisfies the given condition.

Secondly, suppose the lemma is true for n. Let Q,,
Qs s Q- satisfy the conditions in the lemma. Then
construct the following sequence:

Qis Qriy Qras Qo Uin +1}, Qrss Qg Ui{n+1},
Qrss s Qs Q Ufn+1}, {n+1}, Q U i{n +1}, Qas
Qs Ufn+1}, Qus ***y Qray Qo U {n +1}.

It is casy to check that @ satisfies the lemma for n + 1.

Back to the problem, we prove that forn € N*, n = 4,
there is a permutation satisfying @ and P»_,, = {1, n}.

When n = 4, the permutation

{1y 3}s {1525 3}s {2, 3}y {15 25 35 4}, {1, 2}, (1, 2,
4}, {2, 4}, (2, 3, 4}, {3, 4}, {1, 3, 4}, {1, 4}
also satisfies the given condition.

Now suppose the permutation P,, P,, -+, P»_,, satisfies
@, and Py, = {1, n}. Using the lemma, let the permutation
Qs Qsy *++, Qo satisfies @. Then for n + 1, the following
permutation

Piy Pyy ooy Poy s Qo U +1}, Qs U{n+1}, *,
Q: U {n+1}
satisfies @ and P+ _¢ipy = Q1 U {n +1} = {1, n +1}.

So there is a suitable permutation forn =4,
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@& Letm,neN,m,n>1,a;G=1,2, y,n,j =1,
2, +=-, m) be non-negative real numbers (not all zero).

Find the maximum and minimum values of
n E(Za,}-)" +m E (Zau )2
i=1_ j=1 i=1__i=1
(21 Ea;j)z—l-mnzl} 21(1:3
i=1 j=1 i=1 j=

Solution The maximum value of f is 1.

f =

Firstly, we prove that f << 1. It suffices to show that
" E(Ea) S E(Ea)
% (2 za) e 2 Ea
or (Z jz:;a,.,.)z Lo Z) ;a - Z}(Za) —
m _Zm;(zﬂ;a.j)2 >0,

or Z (g + 0 — b —8x) =0,
1=p<ls<n
I<g<r<m

So f <1, and when all of a; are equal to 1, f = 1.

m +n
mn +min{m, n}’

The minimum value of f is

m +n
mn +min{m, n

To prove [ = P without loss of generality,

we assume n << m. Hence it is sufficient to prove that

f;m. ©

mn +n

Let

m +n m +n

S — 2(m+1)2 2+mn(m+1) i‘ff
i=

i=1
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~ (2 Day)* —mn Z} Zaw

i=1 j=1 i=

n
where r; = Ea.,,1 iSn,c;=Dagri<j<m
i=1

Now @D &S = 0. Consider Lagrange’s equation.

(Eaibs) (Eaz)(Eb )= D) (abr —aibi)?

ls=k<ll<n

Puta; =r;» b; =1, 1 <i <n., Then

—(i} ia,j)z =—n Erf-l— 2 (ry —11)%,
i=1 j=1 1<Ch<l<n
and
Szmn(n—'l)z +mn(m +1) gcf

m +n = m +n

—mn zﬂ} Zm)a,z, + Z (ry —7)*

i=1 jml 1<k<I<n

_mn(n —1) Z Ea G 2=

m tn = =

_,r_mn(m +1) E an(l‘:, — )

m +n = =
= E (rs —?’r)z
1<k<I<n
Sincea; =0, r; =Za;sc; =a;,%08 =0
Whena,, =ap» =+ =a, =1 and the othera; =

i . m+n
minimum value of f is ——.
mn +n

91

0, the

With the above arguments, we conclude that the maximum

m +n

value of f is 1 and the minimum value of f is

mn +min{m, n}"
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@» Find the maximum positive number M such that for every
n € N* , there are positive numbersa;, as, ***y a, and b, ,
by *ery b, satisfying

(a) Ebk =1,2b, Zby— +bpp, o =2,3, >, n—1,

k=1

13
(b) ai ‘-n<.._1 -l—Za,-b,—, k = 19 2; e Mo

=1

(¢) a, = M,
Solution Firstly, we prove that

2
max a; < 2, and max b, < ——,
1<k<n I<k=n n—1

Let L = maxa;. From (b) and Ebk =1, wegetl? <1-+L,

1=—k<n E=1
so L <2
Leth, = max by. Then by using 26, = b, +byy ., it is easy

to see that

(k_l)b”'—i_('m_k)b‘Jgkgm,

m—1
by, =

(k —m)b,,ﬂ-(n—k)bm,mgkgn'

n—m
Since b; > 0and b, >0, so

s S
m —1

P =
B=ky . i<k <n
n—m

It follows that

1=Zbk =Zb§+ Zbk
= =

k=mt+1

1 5 1 2 _
>ﬁ(§(k )b, +n—_m( > (n—k))b,

k=m+1



China National Team Selection Test

_m n—m—1s _ #—1
5om + — 5

S0 b, < —2—, that is max b; < —2—.
n—1 1<h<n n—1

&

Now let fo =1, fa =1+ D abir k =1, 2, ==
i=1

= fk, i. e:

fr — fi1 = aibi, and from (b) we have a?

k g‘\f‘f&!k :19 29 tta
Since max a; <2, so
I<<k<cn
fk _f£—1 =ab, < b, v’f&
and
To—fea =285,

Thus, for1 <k <n,

n
Ve +VFi

fin

VI =V fia <bie

bz 2Ts +¢—>2)

2b,

<”*(%+z<m+m>z)

Hence, summing from%, = 1to n,

\/ﬁ<~/ﬁ+2(% 2(;:1—1)

3 1
2 T3 D

2

93

» n. Then
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S

Let n -+ oo, we obtaina, <

Whenak =1+%; bk =l,k =1, 2; s Ny WE have
51 i
E —(1 +—). Hence the maximum
= n 2n

i=

i =(1+£) <1+

value is 2
>
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First Day
1500 - 1900 August 8,2006

@» A function f: (0, + o)—>R satisfies the following
conditions:

(a) f(a) =1 for a positive real number a,

() f()f(y) +f(§—)f(%)=2f(xy), @

for any positive real number =, y. Prove that f(z) is

constant.

Proof Settingz =y =1in @ gives
D)+ f3a) =2f(1),
(fFQ1) —1D* =0,
so f(1) =1,

Setting y = 1in @ yields
f() fD +f(§)f<a> =2f(z),

flz) = f(%) z >0 )

Setting y = % in @ yields

f(x)f(%)+f(%)f(x) = 2f(a),
f(x)f(%)=1. ©)

Combining @ and @ gives f*(z) =1, x >0.
Setting z = y =4t in @ gives

£20 +£2(F) =20 @,
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f@) >0.

So f(z) =1, x >0, as desired.

@» Let ABCD be a convex quadrilateral. Let O be the
intersection of AC and BD. Let O and M be the
intersections of the circumcircle of AOAD with the
circumcircle of AOBC. Let T and S be the intersections
of OM with the circumcircle of AOAB and AOCD
respectively. Prove that M is the midpoint of TS.

Proof Since /BTO = #BAO and ~BCO = /BMO, A\BTM

and ABAC are similar. Hence,

T™ _ BM
AC  BC’ ©
Similarly,
ACMS «» ACBD.
Hence,
MS _ CM
BD BC® @

Dividing @ by @, we have
T™M _ BM  AC ®
MS CM BD'
Since /MBD = /MCA and
ZMDB = #MAC, AMBD and /A\MCA

are similar. Hence,

BM _ BD
CM AC’ @

Combining @ and @) yields TM = MS, as desired.
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@& Prove that for i = 1, 2, 3, there exist infinitely many
integers n satisfying the following condition: we can find
i integers in {n, n +2, n + 28} that can be expressed as
the sum of the cubes of three positive integers.
Proof We first prove a lemma.
Lemma Let m be the remainder of the sum of the cubes of
three positive integers when divided by 9, thenm # 4 or 5.
Proof . since any integer can be expressed as 3% or 3k + 1
(k € Z), but

(3k)* =9 X3k,
(3k £1)* =9 X (3k? +£3k* +k) +1,

as desired.

Ifi =1, taken =3G3m —1)*> —2(m € Z"), then4 or 5 is
the remainder of » and » + 28 when divided by 9. So, they
cannot be expressed as the sum of the cubes of three positive

integers. But
n+2=0Gm—1)?*+0Gm—1)?*+0Gm —1)°

Ifi =2, taken = 3m —1)* +222(m € Z"), then 5 is the
remainder of » when divided by 9. So, it cannot be expressed as
the sum of the cubes of three positive integers. But

n+2=0Cm—1)*+2% 46,
#+28 = @Gm—1) 5 +5.
If i = 3, take n = 216m’ (m € Z"). It satisfies the

conditions:
n = 3m)® + (4m)> + (5m)?,
n+2=(6m)>?+1 +13,
n+28 = (6m)* +1° + 3%,
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This completes the proof.

@» Eight persons join a party.

(1) If there exist three persons who know each other in
any group of five, prove that we can find that four
persons know each other.

(2) If there exist three persons in a group of six who
know each other in a cyclical manner, can we find
four persons who know each other in a cyclical
manner?

Solution (1) By means of graph theory, use 8 vertices to
denote 8 persons. If two persons know each other, we
connect them with an edge. With the given condition, there
will be a triangle in every induced subgragh with five vertices,
while every triangle in the graph belonging to different

8—3 5
( > )= (2) = 10 induced subgraghs with five vertices. We

8
know that there are 3 X(S) =3 X56 = 168 edges in total in these

triangles, while every edge is computed ten times repeatedly.

2 X168
8 X 10

Thus every vertex is incident with at least >4 edges. So

there exists one vertex A that are incident with at least five
edges.

Suppose the vertex A is adjacent with five vetices B, C,
D, E, F. By the condition, there exists one triangle in five
vertices. Without loss of generality, let ABCD denote the
triangle. So there exists one edge between any two vertices in
the four vertices A, B, C, D. So the corresponding four

persons of the four vertices know each other.
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(2) If there exist three persons (in a group of six) who
know one another in a cyclical manner, there may not exist four
persons who know each other.

For example, let 8 vertices denote 8 persons. If two
persons know each other, we join them with an edge. Consider

the regular octagon, we link up the 8 shortest diagonals, as desired.

Second Day
0900 - 1330 August 9,2006

@ LetS ={(@a,b) |1<a,b<5,a,b€Z} Let T be the
set of integer points in the plane such that for any point P
in S, there exists a different point Q in T such that PQ
does not contain integer points except P and Q. Find the
minimum value of | T |, where | T | denotes the number
of elements of the finite set T'.

Solution We first prove that | T |+ 1.

If| T|=1,1let T = {Q(xos yo)}. We may take point
P(z,, y,) in S satisfying the conditions: (1) (z;, y,) # (x¢»
¥0)s (2) z; and z, have the same parity, y, and y, have the
same parity. Then, the midpoint of PQ is an integer, which is
a contradiction.

If | T |= 2, see the following figure satisfying the

conditions of the problem:
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as desired.

@ LetM = {1, 2, -+, 19} and A = {a,, a2, ***, a} =M. Find
the minimum value of %4 so that there exist a;, a; € A such
thatifb € M , thena; =bora; £a; =b.

Solution By the definition of A, we have k(k +1) =19,

implying £ = 4,

If # = 4, we have k(k + 1) = 20. We may assume that

ay <a, <asz <a,. Then, a; = 10,

(1) Ifay = 10, thenas; = 9, and we havea, = 8 or 7. If

a, = 8, then 20, 10 —9 =1, 9 —8 =1, impossible. Ifa, =7,

thena, = 6o0r5. Since 20, 10—9=1,7—-6=10r20,9—-7 =

2, 7—5 =2, impossible.

(2) Ifay =11, thena; =8, and we havea, =7 anda, =6,
impossible.

(3) Ifas =12, thena; =7, and we havea, =6anda, =5,
impossible.

(4) If a4y = 13, thena; =6, a» =5, a; =4, impossible.

(5) If a, = 14, thena; =5, a, = 4, impossible.

(6) Ifa;, =15, thenas =4, a, = 3, a, = 2, impossible.

(7) If ay, = 16, thenas; =3, a;, = 2, a; = 1, impossible.

(8) If a4 =17, impossible.

Sok =5. LetA = {1, 3, 5, 9, 16}, then A satisfies the

conditions of the problem. Therefore £, = 5.

@P» Letx; >0, andk > 1. Prove that

n 1 n n I’*_i-l n 1
Z1+x.— 4% éE'i-Fx,— Z—?'

i=1 i=1

Proof | Observe that the above inequality is equivalent to
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n xk__l n ,l n 1 n
L B S s
i=1 1 +Ij ; .I'f ; 1+I, ;I! /0. @
The left-hand side of (D is equal to
I-:_z+1 1 _ I}_
g} 14+=x; _1:_‘;‘ g; 14z
-I§+I _If+1

k1 1 1 kH
1 [I,‘ — I x; o ]
i

2 A +zx)xt A +zx))xt

1 i s G H@ded — 1 Tas
> ; (zi x5 A +z)A +z)xtxt

-y 3 s any (&t —xf) txa; G — 2
2 2}(1- #) A +z;)A +z)zkzt

=0,

Proof  We may assume thatx, >z, >+ >z, >0. Then,

we have

1 1 ]|
— g-_k = o g_k’ ®
T X3 Iy

x} = x4 . zt ®

= = e :
1+, 1+, 1+,

By the Chebyschev Inequality, the left-hand side of original

inequality is equal to

( ST AT )(I,+I2+---+xn)

14+ 1+x; 1 +x,

1 x4 1 zh 1 xk
B D T IR T
(Ik 14+=z = 1+.1‘2+ = 14z,

X (xy +xz +2 +x,)

1 1 1 xk xk xt
< —+—+---+—)( L 2 —)
= (If xk 2\ +z, 1+ * +l Gt
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X(xy +x5 ++z,)/n

& k k
v ] X3 i Ln
_‘_‘_‘<“_ L] + LR ” -
(I' Tobgy T8 gy TR 1+I,,)
1 {
(x. 31 g fre=t ‘:)
k+1 £+ k1
x4 x5 il 1 1 1 )
- Mo e e
(1+I, +1+x2 3 +1+x,,)(.x’f xk xt
_ n If+1 n i
1tz =l 28

@» Let p be a prime number greater than 3. Prove that there

exist integers a\, az, ***, a, that satisfy the following

conditions;
(a)
P P
g <ay <a <+ <a QE,
(b)
p—al p_az -...ip_af =3m’

- -
|a]| |az| |a,|

where m is a positive integer.
Proof By the Division Algorithm, there exists unique integers
g and r such that p = 3q +r, where 0 <r» << 3.
Taking b, = r, then
P — by 3c° b P

_ 1 . i y
™ e | where 316, and 0 < b < >

Taking b; ==xb¢ such thatb, = p (mod 3), then

p _bl 3C] . [Jz‘
= , by ( 2 —.
5] B where 316 and 0 < bs < 2

-
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Taking b, ==+ b5 such thatb, = p (mod 3), then

p—b 37 .0
| & | b3

2., where 3165 and 0 < b3 <~§.

Repeating this process, we get

bos byy *eey bp-

Since these p + 1 integers are in the interval (—

™ |
-

).
certain integer occurs twice. Suppose b; = b;, i < j, and b;,

bitrs ***y b are distinct. So,

p —b: . P —bin s o —bj
& | | bi | | b |

- 3"";‘ . b;‘“l—] . 3“:’-‘1-1 + bi’l'z L s 3c.i_l . bj'
b b ;—1 .

Since b; = b;, then b, = b;. So the above expression equals to

(s FEE] +‘"+Cj_l

3 =3HQH>U.

Putb;, biry» **+, b;—, in ascending order, as desired.

2007

August 13 and 14,2007

@D A positive integer m is called good, if there is a positive
integer n such that m is the quotient of n over the number
of positive integer divisors of n (including 1 and » itself).

Prove that 1, 2, *--, 17 are good numbers and that 18 is
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not a good number.
Proof For positive integer n, let d (n) denote the number of

positive divisors of » (including 1 and #n itself).

Firstly, note that 1 and 2 are good, since 1 = 4(22) and
. B
2=

Secondly, we note that if p is an odd prime, then p is
good. This is because d(8p) = 8. In particular, 3, 5, 7, 11,
13, 17 are good numbers.

Thirdly, we note that p is an odd prime, then 2p is good.
This is because d(2? « 3°p) =3 « 3 « 2, In particular, 6, 10, 14
are good numbers.

Fourthly, we note that

_ 36 o _ 9 _ 108
v=gGe’ ¥~ d0oe’ ? —dam’
240 360 _ 128

12=70G10y' > = 2Gen’ 1° = 728y

Thus, the numbers 1, 2, -+, 17 are good.
Finally, we prove that 18 is not good. We approach

n

d(n)

2% « 37T o phieeepla (where p, < ++ < p,, are prime numbers

indirectly by assuming that 18 = orn = 18d(n) forn =

greater than 3 anda, b, k,, ***, k,, are positive integers) ; that
is,
271 e 3 e phieeepln = (a +1)(b +2)(ky +1)e==(k,, +1).
@

For every odd prime p and every positive integer £, we can

show (by an easy induction on &) that

pt >k +1. )
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Combining the last two relations, we deduce that
a3 <@+ +2)
or

g <b+2

f(a) = e

= g(b).

It is easy to prove that f(1) = %, f@2) = %, 3 =1,

16, and f(a) 22 >4 fora =6. It is also

. _ 16
f(4)—5,f(5) 6 7

easy to prove that g(1) = 3, g(2) = %, g(3) <%. and

g(® <% for b = 4. Thus @ holds only if b < 3.
If b =3, then (a, b) = (1, 3), and @ becomes

9phi e phn = 10Ck; + 1 (b +1),

implying that p; = 5. Since @ and P _ s >3
implying that p, . Since @ an el e or

positive integer £, = 1, we can easily see that there is no

solution in this case.
Ifb — 2, thel‘l (ay b) = (15 2)! (25 2)3 (35 2)1 al'ld
(D becomes

3025 phieplp = 4@a + 1) (kg + 1wy + 1),

We deduce that 4 divides 2*' ora =3. Hence « must be equal to
3. But then 4(a +1) = 16 divides 2*', which is impossible.

Ifb6=1, then(a, b) =, 1), (2, 1D, (3, 1), (4, 1), (5,
1), and @O becomes

247 phiee phn = 3(a + 1) (ky +1Doer(hy, +1),

which is impossible since p; are primes greater than 3.



China Girls’ Mathematical Olympiad 107

In all the cases, we cannot find » satisfying the condition

o B - .
18 = ao’ that is, 18 is not a good number.

Note For primes p = 5, both 3p and p? are good, since
d(2? «3p) =3+2+2andd(2° «3« p?) =423,

@» Let ABC be an acute triangle. Points D, E and F lie on
segments BC, CA and AB respectively, and each of the
three segments AD, BE and CF contains the
circumcenter of ABC. Prove that if any two of the ratios

BD CE AF BF AE CD
DC’EA’ FB’ FA’ EC’ DB
are integers, then triangle ABC is isosceles.

6
Proof I Note that there are (2> =15 possible pairs of ratios

among the six given in the problem statement. These pairs are
of two types: (i) Three of these pairs are reciprocal pairs
involving segments from just one side of triangle ABC. (ii) The
other 12 pairs involve segments from two sides of the triangle.
We first consider the former case.

CD
( ) [fﬁ and DC

ratios must be 1 and BD = DC, Then in triangle ABC, AD is

the median from A and D, because AD contains the

are both integers, then both of these

circumcenter, is also the perpendicular bisector of segment BC.
It then follows that AB = AC and the triangle is isosceles.

CE AE ; AF BF
Similarly, if =+ EA and —= EC are both integers or — 7B & and FA are

both integers, then triangle ABC is isosceles.
(b) Let O be the circumcenter of triangle ABC, and let
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ZCAB =a, LABC =8, and ZBCA = y. We show that any of

sin 2x
sin 2y

two of «, B, 7. Since ABC is acute, 0° <a, 8, ¥ <90°and O
lies in the interior. Hence ~AOB = 2y, /BOC =2«, and
ZCOA = 2B. Applying the sine rule to triangles BOD and COD

the ratios can be written in the form =—== where x and y are

gives

BD _ BO
sin Z/BOD  sin /BDO

and

CD O
sin /COD ~ sin ZCDO"

Next note that BO = CO and that

Z/BDO + ~CDO = 180°
= /BOD + /AOB
= /ZCOD + ZAOC.

It follows that

BD __ _BD _ _CD__ _ CD
sin2y sin /ZBOD  sin ZCOD  sin2g’

sin 2y CE _ sin2q _ sin2B
gwmg CD sin 23" SIIATSE B e 27" nd 57 FB sin 2a°

Now assume that one of the twelve type (ii) pairs of ratios
consists of two integers. Then there are positive integers m and

n (withm < = ) such that

sin2x =msin2z and sin2y = nsin2z

or

sin2z =msin2x and sin2z = nsin2y
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for some choice of z, y, z with {x, y, 2z} = {as 8, 7}.

Without loss of generality we may assume that
sin 2¢ =msin2y and sin2fB = nsin2y
or
sin2y =msin2¢ and sin2y = nsin28 @D

for some positive integers m and n.
Note that there is a triangle
with angles 180° — 22, 180° —28,
and 180° — 2y. (It is easy to
check that each of these
angles is in the interval (0°,
180°) and that they sum to

180°.) Furthermore, a triangle

with these angles can be constructed by drawing the tangents
to the circumcircle of ABC at each of A, B and C. Denote
this triangle by A B,C, where A, is the intersection of the
tangents at B and C, B, is the intersection of the tangents at
C and A, and C, is the intersection of the tangents at A and
B. Applying the sine rule to triangle A,B,C, and by @D

we find
AiB, : BiC, : C1A, =sin LC; ¢ sin LA, * sin /B,
= sin2y * sin2q ¢ sin 2,
that is,
AB,+BiC,+CiA; =1smn

or
A;Bl :B|C1 :C1A1 =mn:in:im, ®

By the triangle inequality, if follows that 1 +m << n (that is,



110 Mathematical Olympiad in China

m =mn ) orn-+m >nm (thatis, (n —1)Gm —1) <landm =1).
We deduce that either sin 2a = sin 2p or sin 2y = sin 2¢. But then

elther% gf: gﬁ % , by case (a), triangle ABC is

isosceles.

Proof  (We maintain the notations used in Proof .) We
only consider those 12 pairs of ratios of type (ii). Without loss
of generality we may assume that each of the following sets

{BD o8 }and{gg ?j: } has an element taking integer values.

DC’ DB
By symmetry, we consider three cases:
BD BF
(a) In this case, we assume that DC m and FA -7 for

some positive integers m and n. Applying Menelaus’s theorem
to line AOD and triangle BCF yields

AO DC BF

Lo 2 =1

OD CB FA

or

OD DC BF =n

AO_CB FA _m+1

Likewise, applying Menelaus’s theorem to line COF and

CO _n —|—1
OF

Since triangle ABC is acute, O lies on segment AD and CF
with AO >OD and CO >OF. Hencem +1 >nandn +1 >m,

implying thatm —1 <<n <\m +1. Since m and n are integers, we

triangle BAD yields ==

must have m = n. It is then not difficult to see that A and C are
symmetric with respect to line BF and triangle ABC is isosceles
with AB = CB.
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CD _ AF _

(b) In this case, we assume thatﬁ m and =5 FB "
for some positive integers m and n. Applying Ceva’ theorem
gives

AF _BD €E _, .. CE_w
FB DC EA EA n

Applying Menelaus’s theorem to line BOE and triangle
ACF yields

BO EC  AF

OE "CA "FB ~ |

or

BO _FB CA _m+n
OE ~— AF ' EC mn

Since triangle ABC is acute, O lies on segment BE and
EO < BO. Hencem +n =Zmn or (m —1)(n —1) < 1. Since m
and n are positive integers, we deduce that one of m and n is
equal to 1; that is, either AF = FB or BD = DC. In either case,

triangle ABC is isosceles.

- CD _ BF _
(c) In this case, we assume that DB - ™ and FA - " for

some positive integers m and n. Applying Ceva’s theorem
gives

AF BD CE_, .. CE
EA

FB "DC "EA

= mn.

We can treat this case as either case (a) (by viewing C in

place of B) or case (b) (by viewing A in place of B).

@D Let n be an integer greater than 3, and let a,, a2, ***, a,

be nonnegative real numbers witha; +a, ++ +a, = 2.
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Determine the minimum value of

a as
a3 +1 a3 +1

ay

R
+af-|—1

Solution The answer is %

The given problem is equivalent to finding the minimum

value of

al +1 a3 +1 ai +1
) 1 . dz i . [
(’ ag+1)+(“2 a§+1)+ +(“" a1+1)
2 2 2
aas aas And]
= e
a3 +1 a3 +1 at +1

ajds +a2a3 - s +a"ﬂ1

=
m = 2

Our result follows from the following well-known fact:

f(al'l' e | a,-,)
= (a; + +a,)?* —4(aa, taras + +aza;)
>0 @®

for integers n = 4 and nonnegative real numbers ay, az, **y a,.
To prove this fact, we use induction on n. For n = 4,
@D becomes

faiy azy ass ay)
= (a; +az +as +a,)?* —4(a,a; +aras +aszas +asay)
= (Ch +a2 +a3 +C£4)2 —4(a| +a3)(a3 +a4);

which is nonnegative by the AM-GM inequality.

Assume that @D is true for n = & for some integer £ = 4.
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Consider the case whenn = & +1. By (cyclic) symmetry in @D,
we may assume that a,, = min{a;, a,, ***y @z }. By the

induction hypothesis, it suffices to show that

D =f(aas tte Uy ak—:—l) _f(als Tt dp—1 Ay +a.ir-:~l)
= 0.

Note that

% =—(aia, +* +aap +apa) +laa; +-
+apCay +a) +as +amdar]
= Qp1Qp T ara) —apapp
= apqarn +a; —aplag
=0,

completing our proof.

From the above result, we can get

(a1ar +asas ++ +a,a,)

N

(a] +ﬂ3 i +an)2

X
4

p|= o)== N|=

-

therefore

2 2

ayas asas a,a
+ oo + =

ai+1 a3 +1 ai +1

g%,

that ism 2%. Whena; =a, =landas; =+ =a, =0, m = %
hold.

So the minimum value is %
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@ The set S consists of n > 2 points in the plane. The set P
consists of m lines in the plane such that every line in P is
an axis of symmetry of S. Prove that m < =, and
determine when equality holds.

Proof (a) Denote the n points as A;, A,, *+, A,, and

A; = (z;y y:), G =1, 2, ===, n) in the coordinate system. It is

obvious that the equality E I?‘-lb = 0 holds if and only if
=1

B = (%E:c.- , iZy,-), which means there exists only one

i=1 i=1

point B in the plane such that 2 E?fit = 0, and we call it

“center of set S”.

If we take any line p in the set P as the x axis of the

coordinate system, then Ey,- = 0, that is, B belongs to p.
f=1

Thus, every line in P passes through point B.
(b) Let

F={(I;y,P)|I‘,yGS,P EP!

p is symmetric axis of z, y},
F, ={(z, 5, p) €F |z #y},
F, ={(z, y, p) € F | z belongs to p}.
Then,
F=F,UF:;, F,NF, =d. @

Considering any line p in the set P, and any point x in the
set S, we could get that = has only one symmetric point y, with
p as the symmetry axis. Therefore, there are » corresponding

arrays (x, y, p)for any p, and
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| F | =mn. @

As to the array (z, y, p) in F;, since there is only one

symmetric axis for the different points = and y, then

| Fy |[<{(xs ¥) | x4+ ¥y €ESs = # 3} =2(;)=n(n—1).

©)

As to the array in F,.
When any point in S belongs to no more than one line
P; then

| Fo |<{zx|x €8S} =n. @
From @O - @, we get
mn <n(n—1) +n,

that is, m <n.

When there exists one point that belongs to two lines of P,
then as proved in (a), it must be the center of set B.
Considering the set S" = S\{B}, since every line in P is still the

symmetric axis of the points in S’, then we get
m<|S |=n—1.

Thus, we obtainm < n.

(¢c) When m = n, the equalities @, @ in (b) hold
simultaneously. So, perpendicular bisector of a line segment
joining any two points in S belongs to P, and any point in S
belongs to one line in P, while the ‘center of set’” B is not
in S.

Now, we could first prove all the BA;(i =1, 2, *+, n)
are equal. Otherwise, if there exist j, £ (1 <j <<k < n) such
that BA; # BA,, then the symmetric axis of A;A; does not pass
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through B, which is contradictory to (a). Thus, A;, A;, =+, A,
arc all on the circle with B as its center, that is, ©®B. We could
suppose A, A,, -+, A, are arranged clockwise for
convenience.

Then, we could also prove that A, A,, =, A, are n
points dividing (OB into equal parts. Otherwise, if there exists :
(i =1, 2, »+, n) such that A;A.y #FA LA, (JetA,y =A,,
A, = A; ), we could suppose A;A;
< A;uA;5. Then as shown in the A,

figure, the symmetric axis [ € P, but the /A\
A, A,

symmetric point of A,;; is on the arc

1"
1!

e

AiAis (excluding the point Ay,

A ). However, this is in contradict

with the condition that A;; and A, are [
adjacent.

Hence, the points in S are the vertices of a regular n-gon
(n-sided polygon), when m = n. On the other hand, it is
obvious that the regular n-gon has exactly » symmetric axes.
Therefore, the points in S are the vertices and the lines in P
are the symmetric axes of the regular n-gon if and only if

m = n.

@P» Point D lies inside triangle ABC such that /DAC =
ZDCA = 30°and ZDBA = 60°. Point E is the midpoint
of segment BC. Point F lies on segment AC with
AF = 2FC. Prove that DE | EF.

Proof | Let G and M be the midpoints of segments AF and

AC respectively.

In right triangle ADM, ZADM = 60° and AM = /3DM.
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Note that AM = 3GM. Hence

B
DM =y3GM and DG = 2GM =
AG = GF. By symmetry, DF = E
GF and DFG is an isosceles
triangle.
ASY—G M F C

In triangle ADG, AG = DG
and Z/ADG = 30°. Since LABD =/DGF = 60°, ABDG is
concyclic, implying that /ABG = /ADG = 30°. Note that EF
and EM are midlines in triangles BGC and BAC respectively. In
particular, EF / BG and EM // BA, implying that / MEF =
ZABG = 30°.

Therefore, / MEF = /MDF = 30° and MDEF is concyclic,
from which it follows that /DEF = 180° — /DMF = 90°,
Proof T (We maintain the notations of the first proof.)
Let N be the midpoint of segment CD. Then EN and ME are
the respective midlines in triangles BDC and ABC. In
particular, EN / BD and EM // BA, implying that A MEN =
ZABD =60°. Thus, /MDN = /MEN = 60°, that is, MDEN
is concyclic. B

It is easy to compute that
AC =\3CD, CF = J3CN and

gff - g—g Thus, triangles CNF and
CMD are similar. Consequently, we
deduce that ~CNF = /FMD = 90°, that is, MDNF is
concyclic.

Therefore, MDENF is concyclic (with DF as its diameter)

and ~/DEF = 90°.

A

@» For nonnegative real numbers a, b, ¢ witha +b6 +c =1,
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prove that

Ja +8=S 4 5 +Vc <3,

Proof ] Without loss of generality, we may assume thatb >c.

We setv/b = x +y andy/c = z — y for some nonnegative real
numbers = and y. Henceb —c =4xyanda =1—2z% —2y% It

follows that

g g O - L SlB il — ol —E B At i
@®
Note that 2z = b ++/c , implying that
4z? = Wb ++c)* <2b +2c <2,
by the AM - GM inequality. Thus, 4x%y® < 2y? and
1 —22% —2y% +4x29* <1 —22%.

Substituting the last inequality into (D yields

+ & —cP |\ 5 +fe < JI—28F +22

4
=/1-222 +z +zx
<v3,
by the Cauchy-Schwarz inequality.
Proof T Leta =u«?, b =v%, andc = w? Thenu? +v* +

w? = 1 and the desired inequality becomes

,\/ —l— w?)? +v +w <3, @

Note that
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u? Kot —wfdt 1 — i _‘_('v2 —w?)?

4 4
_4—4@* +w?) + (v? —w?)?
4
_4-4@* +tw?) + (@ +w?)? —4v’w?
4
o B —w®P — e’
4
= @ —p*—w? —2u) @ —v*—w*+ o)
4
_R2—(w4+w)?]2—(v—w)?]
4
(v +w)?
& { YT
"‘-..‘1 2 -

(Note that (v +w)? < 2(v? +w?) < 2 ) Substitute the above

equation into @ and it gives

2
1= @ +v +w <3,
Set 2% — o We can rewrite the above inequality as

2

V1 =222 +2z <43,

and we can complete the proof as we did in the first proof.
Note The second proof reveals the motivation of the

substitution used in the first proof.

@D Leta, b, c be integers each with absolute value less than
or equal to 10. The cubic polynomial

fx) =z +ax® +bx +c¢

satisfies the property

| £(2+4/3) | <0.0001.
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Determine if 2 ++/3 is a root of f.

Solution We attempt to arrive at a contradiction by assuming

that 2 ++/3 is not a root of f. We need to evaluate
FQ+3) =@2+Y3) +a@+V3)? +bQ2 +V3) +¢
= (26 +7a +2b +¢) + (15 +4a +6) V3.

Letm =26+7a +2b+candn =15 +4a +b. Then | m | <130
and n << 65. It follows that

| m —n+/3 | <130 +65V3 < 260.
Thus;

m? —3n?

m—n3 |

| FQR+V3) |=|m+ny3 |=

By our assumption, f(2++/3) is nonzero. Hencem +n+/3 #0.

Since m and n are integers, and /3 is irrational, | m? —3n? | >
1. It follows that

m? —3n?

m _ﬂ'\[j

which is a contradiction. Hence our assumption was wrong and

>_1 >0.001,

2 +4/3 is a root of f.

@ In a round robin chess tournament each player plays with
every other player exactly once. The winner of each game
gets 1 point and the loser gets 0 point. If the game ends in
a tie, each player gets 0. 5 point. Given a positive integer
m, a tournament is said to have property P (m) if the
following holds: among every set S of m players, there is

one player who won all his games against the other m — 1



China Girls’ Mathematical Olympiad 121

players in S and one player who lost all his games against
the other m — 1 players in S.

For a given integer m = 4, determine the minimum
value of n» (as a function of m) such that the following
holds: in every n-player round robin chess tournament
with property P(m) . the final scores of the n players are
all distinct.

Solution Note that if there are 2m — 4 players, we can
label them

Ais Aoy """y Ap—3 Am—29 Bm—zs A1y """y Q259

and assume that player P; beats player P; if and only if7 > j,
and A, and B, are in a tie. It is easy to see that in the group
of m players, there exists a unique player P; with the maximum
index: (m —1 < i < 2m — 5, and this player won all games
against other players in the group), and there exists a unique
player P; with the minimum index j (1 <i <<m — 3, and this
player lost all games against other players in the group). Hence
this tournament has property P(m) and not all players have
distinct total points. If n <<2m —4, we can then build a similar
tournament by taking players away from both ends index-wise) .
Hence the answer is greater than 2m —3. It suffices to show the
following claim;

If there are 2m — 3 players in a tournament with property
P(m), then the players must have distinct total final score.

In a group, if a player won (or lose) all games against the
rest of the players in the group, we call this player the winner
(or loser) of the group. If a player won (or lose) all his games
in the tournament, we call this player the complete winner (or

complete loser). We establish the following lemmas.
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Lemma 1  In an n-player (n = m) tournament with

property P(m), there is a complete winner.
Proof: We implement an induction on n. If n = m, the
statement is trivial. Now assume that the statement is true for
somen = k (B =m), we consider a (£ +1) -player tournament
with property P(m). Leta,, ***, a;~ denote the players. By
the induction hypothesis, we may assume that a,.; is the winner
in the groupa,, ==, apy. We consider three cases:

(a) If axy won the game against a;, then a,. is the
complete winner;

(b) If a, tied the game against a,, then the group a;.,
ass ***y a1 apy has no winner, violating the condition that
the tournament has property P (m);

(c) If apy lose the game against a,, then the group
{aiy @zs ***y @iy apy aprr}\{a;} (2 <i <k) has a winner,
and this winner can only be a,. Thus a, is the complete winner.

Combining the three cases, we find a complete winner in
the tournament. hence our induction is complete.

In exactly the same way, we can prove that

Lemma 2 In an n-player (n = m) tournament with
property P(m), there is a complete loser.

Now we are ready to prove our claim in a similar manner.
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First Day
0800 - 1200 November 4,2006

@D Let n (>2) be a positive integer and a, , az, ***y a, €0, 1).

Find the maximum value of the sum

Z -\Ef ﬂ'.,'(i —a,-+1)
i=1

where Api1 = aAqa
Solution By the AM - GM Inequality, we deduce that

6

a;(l—ai)
&
_nt 2 — oill-i'i
—Zﬁ,\/a,(l ai) 2 "2 "2 "2
gz%.%-(ai‘i‘Al_ai-'—l—i_Z)
2 1
=23 » T Ca; —auy +3).
So
E 6a,-(i —ai)
i=1
2. 1
<27 = (a; —aw +3)
6i_|
—J %.ll
=2 3 3n
= M
2

The equality holds if and only ifa; =a, =+ =4a, = So

1
5

Vmax =

ik
ok
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@ Find the smallest positive real number £ such that for any
four given distinct real numbers a, b, ¢ and d, each
greater than or equal to £, there exists a permutation p,

g, r and s of a, b, ¢ and d such that the equation
(x® +px +g)(x®> +rx +5) =0

has four distinct real roots.

Solution Suppose # < 4. Takea, b, c, d €[k, ~/4k ]. Then
for any permutation p, ¢, r, s of a, b, ¢, d, consider the

equation x> + px +q = 0, its discriminant
A=p? —dg <4k —4qg <4k —4k = 0.

Therefore it has no real roots. So & = 4.
Suppose 4 << a < b < ¢ < d. Consider the following

equations:
> +dx +a =0,
z2 +cx +b =0.
Observe that their discriminants
A=d?—4a >4(d —a) >0
and
A=c?—4b >4(c —b) >0.

Then the above two equations have two distinct real roots.
Suppose these two equations have the same real root .

Then we have
B*+dp+a =0,

B*+cf+b =0,

> (. Then

Taking their difference yields g = b_i

d_
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B? +dp +a >0, which leads to a contradiction. Sok = 4.

@» In APBC, /PBC = 60°. The tangent at point P to the
circumcircle w of APBC intersects with line CB at A.
Points D and E lie on the line segment PA and circle w
respectively, such that /DBE = 90° and PD = PE. BE
and PC meet at F. It is given that lines AF, BP and CD
are concurrent.

(1) Prove that BF is the bisector of /PBC;
(2) Find the value of tan /PCB.
Solution (1) When BF bisects ~PBC, since ~DBE = 90°,
we know that BD is the bisector of /PBA.
By the angle bisector theorem, we have

PF CB AD _PB BC AB

FC 'BA'DP BC'BA "PB "

By the converse of Ceva theorem, the lines AF, BP and
CD are concurrent.

Suppose there exists ~/D'BF’ satisfying the conditions:
(a) «D'BF’" = 90°, (b) the lines AF’, BP and CD’ are
concurrent. We may assume that F’ lies on PF. Then, D’ is on
AD.,

So
PF’ _PF AD’' _AD
FC <FC’'PD <“PD
Thus

PF' CB _AD' _PB BC  AB

F'C'BA'DP <BC'BA'PB_ U

which leads to a contradiction. This completes the proof.

(2) We may assume that the circle O has radius 1. Let
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ZPCB =q. By (1), Z/PBE =
ZEBC = 30°. Therefore, E is

the midpoint of PC.

Since /MPE = /PBE =
30°y, ZCPE = /CBE =30°and
PD = PE, we obtain /PDE =
Z/PED =15°, PE =2+ 1 «sin30°and DE = 2cos 15°.

Since

BE = 2sin Z/ECB = 2sin(e +30°)
and /BED = /BEP —15°, we have

_ 1zoy — BE _ 2sin(a +30°)
cos(a —157) ~DE 2c0s 15° "

cos(a — 15%)cos 15° = sinla +30%),

cosa +cos(a —30°) = 2sin(a +30%),

cos @ + cos acos 30° + sin asin 30° =/3sina + cosa

1 +% —l—%tana = ira- 4,

So

6 +4/3
1

tang =

@» Assume that a is a positive integer and not a perfect

square. Prove that for any positive integer n, the sum

S, ={a}+{Va}?++{Va}"

is irrational, where {#} = x — [z ] and [ =] denotes the

greatest integer less than or equal to x.
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Proof Suppose thatc¢* <a < (¢ +1)?, where ¢ is an integer
greater than or equal to 1. Then, [Va] =¢, 1 <a —¢?® <2c,
and (Va} =va —[Va]=va —c.

Write {va }* = (Ja —¢)* = x4 + y, va , where £ € N and
xes Y+ € Z. We have

S, =(xy +z3 ++z,) + (3 +y: ++y)va. @

We now prove that T, = Z": v 7 0 for all positive integers 7.
Since o
Zen +yenva = GWa — )
= Wa —c)(xy +yiva)
= (ayr —cxy) +(xp —cye) Va s
we have
L1 — AYE — CTpy Y1 = T — CYi.

Since z; =—candy, =1, we have y, =—2c.

By the above equality, we have
Vi+2 =_2Cyk—:—l +(a _Cz)y,&-! ®

where v, =1, y, =—2c.
By mathematical induction, we have

Yau— >0, yu <O ®
Combining @ and 3, we have
Yoz — Vo =— ¢ FDyuy +(a —cHDyx <0,
Yorrz + Yy =— 2c — D yun + (@ —c)yy <.

Taking the product of the above inequalities, we get

y3i2 — vhy > 0. Since y3 — y? >0, we have
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| yar | <] ya |. @
On the other hand, we have
VYo — Y =— 2 +Dyu +@ —cDyuy >0,
Yupn +y¥x =— 2c —Dyxy +(a _Cz)yu,_1 i),
Multiplying the above inequalities, we have y3.4 —y3 >0,
that is, |y;,k |<| Va1 I
Therefore, | v, |<| y.. | for all positive integers n.
Combining @ and @, we have yx 1 +yu <0, yus +y% >0

for all positive integers 7.

Therefore,
Ta =y1 T (y2 +y3) +oo0 + (yorz + y2u) >0,
Ty = (31 +33) +(ys +y4) +o0 +(yay +y2.) <O.

Hence, T, # 0 for all positive integer n. This completes
the proof.

Second Day
0800 -1200 November 5, 2006

@D LetS ={n|n—1, n, n+1all can be expressed as the sum
of the squares of two positive integers). Prove that, if
n € S, then n*€S.

Proof Note that if x and y are integers, then we have

2 +y2=0,1, 2 (mod 4).

Let n€S. By the above equality, we getn =1 (mod 4). Thus,

we may assume that

n—1=a?>+b%, a =b,
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n=c’+d%;c >d,
n+tl=e+f,e=f,
where a, b, ¢, d, e, f are positive integers. Therefore
n’+1=n?+12,
n? = (c? +d?*)?* = (¢* —d*)* + (2cd)?,
n? —1 = (a? +b2)(e® + %) = (ae —bf)? + (af +be)>.
Suppose that b = a and f = e, we have n — 1 = 247,

n +1 = 2¢*. Taking the difference of these two equations
yields e* —a?> = 1. Then, e —a = 1. But

1=¢e®*—a?=( +a)le—a)>1,

a contradiction!
Sob = a and f = e do not happen simultaneously.
Therefore ae —bf >0, and n? €8S.

@ AB is a diameter of the circle O, the point C lies on the
extend line AB produced. A line passing through C
intersects with the circle O at points D and E, OF is a
diameter of circumcircle O, of ABOD. Join CF and its
extension, intersects the circle O; at G. Prove that points
0, A, E, G are concyclic.

Proof Because OF is a diameter of the circumcircle of

ADOB, OF is the bisector of

/DOB, that’s /DOB = 2/DOF.

Since /DAB = %LDOB » WE

have ~DAB = /DOF.
Since /DGF = /DOF,
we obtain /D GF = /DAB.
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Thus, G, A, C, D are concyclic. Hence,

HZAGE = XADC, )
ZAGC = ZAGO + ZOGF = LAGO +§. @
ZADC = /ADB + /BDC = /BDC +%- ®

Combining D, @ and @ yields
ZAGO = £BDC. @
Since B, D, E, A are concyclic, we have
£ZBDC = ZEAO. ®
As OA = OE, we obtain
ZEAO = ZAEO. ®
Combining @, ® and ® implies ZLAGO = LAEO.

Therefore, O, A, E, G are concyclic.

@D Let £ be a positive integer no less than 3 and ¢ be a real
number. Prove that, if both cos (¢ — 1)@ and cos &0 are
rational numbers, then there exists a positive integer
n >k, such that both cos(n — 1)@ and cos nf are rational
numbers.

Proof First we prove a lemma.

Lemma Let a be a real number. 1f cosa is rational, then
cosma is rational for any positive integer m. (%)
We prove by induction on m. By cos2a =2cos’a —1, we get

that ( % ) is true form = 2.

We suppose that ( * ) is true form </ (I =2).

Since
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cos(f +1)a = 2cos la *» cosa —cos ([ —1Da,

then we conclude that ( %) is true for m = [ + 1 and our
induction is complete.

By the lemma, settingm =k, m =k +1fore =48, (£ —1)8,
it follows that cos k@, cos(k* — 1) are rational numbers. Since
k* >k, the statement holds.

@» Given a positive integern =2, let By, B,, -+, B, denote
n arbitrary subsets of set X, each of which contains
exactly two elements. Find the minimum value of | X |
such that there exists a subset Y of set X satisfying:

(@ |Y |=n;

M |Y NB; |<1fori =1, 2, =, n,

where | A | denotes the number of elements of the
finite set A.

Solution We first prove that | X [> 2» — 2. In fact, if

| X |=2n—2,let X = {1, 2, ==+, 2n — 2}, By = {1, 2},

B, = {3, 4}, *=, B,-, ={2n—3, 2n —2}. Since | Y | =#, there

exist two elements in Y that belong to the same B;, then

|'Y N B; | >1, a contradiction.

Let| X | =2n—1.

Let B = ,-Q,Bf‘ then | B |=2n —1 — z, where z is the
number of subset X\B. Suppose the elements of X\B are a;,
Aay """y Q5.

Ifz>n—1, takeY = {a1, ***y @a,1» d}, and d €B, as
desired.

If =z <<n —1, suppose there are ¢ elements that occur once in

Bi, B,, ***, B,. Since >, | B; | = 2n, then

i=1
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t+202n—1—2—1t) <2n,

it follows thatt =2n —2 —2=z. So the elements that occur twice
or more than twice in By, B,, -+, B, occur repeatedly by
2n — (2n —2 —2z) = 2 + 2z times.

Consider the elements that occur once in By, B;, *=*, B, :

2+2=z
2

B:, B,, **=, B, that do not contain the elements &, 6., ***, b,.

bys bsy ***y b,. Thus, there are at most =1 4z subsets in

So, thereexistn — (2 +1) = n —z — 1 subsets containing at
least the elements b, H24 ***, b,.

Suppose that B,, B,, -+, B,-,-. contain the elements
bhl " !;2, aee, 5,,_1_, of by, by, =+, b,, respectively. Since
2in—1—z2)+z=2n—-2—2z<2n-—1,

there must exist an element & that is not in B,, B;, -, B,—_.
but is in B,—. , ***, B,.

Write Y = {a@ys ***s @y byy bas vy by .y d}, as desired.

2007

The 7th (2007) China Western Mathematical Olympiad was
held 8~13 November, 2007 in Nanning, Guangxi, China, and
was hosted by Guangxi Mathematical Society and Nanning No. 2
high School.

The competition committee comprised: Xiong Bin, Wu
Jianping, Chen Yonggao, Li Shenghong, Li Weigu, Wang
Jianwei, Zhao Jiyuan, Liu Shixiong, Feng Zhigang, Bian
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Hongping.

First Day
0800 -1200 November 10,2007

&» LletT ={1, 2, 3, 4,5, 6, 7, 8. Find the number of all
nonempty subsets A of T such that 3| S(A) and 5{S(A),

where S(A) is the sum of all elements of A.
Solution Define S(&F) = 0, Let T, = {3, 6}, T, =
{1,4,7}, T, = {2, 5, 8}. ForA =T, LetA;, = A N Ty,
A,=ANT:,, A, =A NT,, then
S(A) =S(Ay) +S(A) +S(AD
=|A; |—| A; | (mod 3),

So3|S(A)if andonly if | A, |=| A, | (mod 3). It follows that

€| As |2 | Az ) =10, 0}, (0, 3), (3, 0),
(3, 3)s €1y 105 2, 2D,

The number of nonempty subsets A so that 3|S(A) is

2( )+ O+CIHC0)
OG- =

If 3|S(A) and 5|S(A), then 15| S(A). Since S(T) = 36,
so the value S(A) is 15 or 30 (If 3| S(A) and 5|S(A)).

Furthermore,
15=84+7=8+6+1=8+5+2=8+4+3

=8+4+2+1=7+6+2=7+5+3
=7+5+2+1=7+4+3+1=6+5+4
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=6+5+3+1=6+4+3+2
=5+4+3+2+1,

6—=30=6=5+1=4+2=34+2+1,

So the number of A such that 3|S(A), 5|S(A), and A # & is
1.7
The answer is 87 —17 = 70.

@» Let C and D be two intersection points of circle O, and
circle O,. A line, passing through D, intersects circle O,
and circle O, at points A and B respectively. The points
P and Q are on circle O, and circle O, respectively. The
lines PD and AC intersect at M, and the lines QD and BC
intersect at N. Suppose O is the circumcenter of the
triangle ABC, prove that OD | MN if and only if P, Q,
M and N are concyclic.

Proof Let the circumcenter of the

triangle ABC is O, and the radius of

the circle O is R. Then

NO?>—R>=NC+NB, @
MO*—R*=MC-MA. ® & M

Since A, C, D and P are concyclic, so we have
MC « MA = MD « MP., ®
Similarly. since Q, D, C and B are concyclic, we have
NC - NB = ND - NQ. @
From @, @, @, @, we have

NO?* —MO?* = ND » NQ —MD + MP
= ND(ND +DQ) —MD(MD + DP)
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= ND?* —MD? +ND « DQ —MD « DP
So,
OD |1 MN & NO* —MO? = ND* —MD?
&ND - DQ = MD « DP

&P, Q, M, N are concyclic.

@&D» Suppose a, b, ¢ are real numbers, witha +b +c¢ = 3.
Prove that

1 1 1 1

+ + L
5a* —4a +11 562 —4b+11  5c¢2 —4c+11 4

Proof Ifa <—‘;~, then

1
5a2 —4a +11

1
S
&24(3 a). (D
In fact,
D@3 —a)(5a® —4a +11) =24
&5a° —19a% +23a —9 <0

&(a—1)0Ga —9) <0<a <%.

Soiibu, by <%, then

1 1 1
5a* —4a +11 +562 —4b6 +11 +5c2 —4c +11

13 Leg 1
S50 —a) + 568 +506 —e

1

-,

If one of a, &, ¢ is not less than 2, saya = —, then

5

w|o
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5a2—4a—|—11=5a(a——g—)+11
9 (9 4
e o I oo -
=503 (5 5)+11 20.
1 1
R S 5y
S0 s T 711 20
Since
2\2 4 4
v e — S iz =P i
562 —4b + 11 5(b 5)+11 = Sl 2ol
we havc%<l. Similarly,;<i.50
562 —4b +11 10 5¢2 —4¢ +11 10

1 1 1

B -
5a2 —4a +11 ' 56> —4b +11 ' 5¢% —4c +11
A

-
<ttt &

Hence the inequality is holds for all a, 4, c.

@» Let O be an interior point of the triangle ABC. Prove that

there exist positive integers p, g and r, such that

— — — ‘l
|p«OA +q + OB +r-OC|<2—OO7.

Proof It is well-known that there are positive real numbers 3,
¥ such that

—

OA +80B +yOC = 0.
So for positive integer £, we have
k OA +kBOB + ky OC = 0.

Letm(k) = [kB], n(k) = [ky], where [z ] is the biggest
integer which is less than or equal to =, and {z} =z — [z ].
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Assume T is an integer larger than max{ L . Then the

1 l}
By
sequences {m(kT) | £ =1, 2, *} and {n(RT) | &k =1, 2, =}
are increasing, and
|kT OA +m(&T) OB +n(kT) OC|
= |- {+TB) OB — {,Ty} OC|
< |OB| - {kTB) + |OC| - {£Ty}

< |OB|+|0OC]|.

This shows there exists infinitely many vectors such that
RTOA +m(kT) OB +n(kT) OC,

whose endpoint is in a circle O of radius |5§| - I(?(EI So

there are two of the vectors, such that the distance between the

endpoints of the two vectors is less than ﬁ()'/" this means there

exists two integers £, <k, such that

| s TOA +mlsTY OB +nlksT) OC)

— B T OA ik T OB +ulh, TV 0C) |

1
= 2007°

SO, if we let = (kz = k])Tg qg = m(kgT) = m(le);
r =n(k;T) —n(k,T), then p, g, r are integers, and

— — > 1
|pOA +qOB +rOC| < 3067

Second Day
0800 -1200 November 11, 2007

@D s there a triangle with sides of integral length, such that
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the length of the shortest side is 2007 and that the largest
angle is twice the smallest?
Solution We shall prove that no such a triangle satisfies the
condition.

If AABC satisfies the condition, let JA < /B <
ZC, then £/C =2/A, anda =2007. Draw the bisector of
ZACB intersets AB at point D. Then /BCD = /A, so
ACDB «» AACB, it follows that

CB _BD _CD _BD+CD _ AB

AB BC AC BC+AC BC+AC

Thus
2 =ala +b) =2007(2007 +56), )

where 2007 < b < ¢ << 2007 +b.

Since a, b, ¢ are integers, so 2007 |c?, then 3 * 223|c?. We
can let ¢ = 669m, from O, we get 223m?* = 2007 + b. Thus
b = 223m?* — 2007 = 2007, som = 5.

Butc = b, so 669m = 223m?* — 2007, this implies m < 5,

contradiction.

@ Find all positive integers n such that there exist non-zero
integers x,, x2s ***» x,s v, satisfying the following

conditions
{Il e 4z, =0,
z} 4o+ 22 = ny’.
Solution It is easy to see that n > 1.
Whenn = 2k, R €N, let 250y =1, 2z =— 1, i =1,

2, =, k,and y = 1, then the condition is satisfied.
When n = 2k + 39 k € N! let N = 29 Xy = 49
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Fgi == A= e :_1, o :29 T = _21 i :3! 41 a2ty k +19

then the condition is satisfied.

Now if n = 3, and there exist z;, x,, x5, ¥ such that
{x
T

2(z? +x3 +x1x2) = 3y%

+xs +x3 =0,

2
+ 22 + 22 = 3y2,

—ha =

then

Suppose ged (x5 x2) =1, s0 x, x; are odd numbers or one is
even while the other is odd. Hence xi + x3 + x,z, is an odd
number. But 2|3y2, so3y? =0(mod 4). This is a contradiction
since 2(z} +x3 + x1x2) = 2(mod 4).

The answer isn # 1, 3.

@D Let P be an interior point of an acute-angled triangle
ABC. The lines AP, BP, CP meet BC, CA, AB at D,
E, F respectively. Given that ADEF «» AABC. Prove
that P is the centroid of AABC.

Proof Identify the points as complex numbers, with the origin

O coinciding with M. Because M is interior to AABC, there

are positive real numbers a, 3, ¥ witheA + B +yC = 0 and

a+f+y =1 )

Since D is on BC and on line OA (= MA), it follows that

D =

1 1=

i o _ —B -
_GA. Similarly, E —ﬁB and F —L1 = yC'
Because ANABC is similar to ADEF, we have

D—E _E—-F
A-B B-C
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Substituting our expressions for D, E and F yields

yBC+ﬁAB+aAC_aAB_BBC_7AC=U ®
1—7 ' 1-8 ' 1-a 1-a 1-8 1-7

Taking (D into account, equation @ implies that

BC(y? —?) +CA(a? —y?) +AB(B? —a?) =0,
and that

(72 —BHB(C —A) + (a* —y)A(C —B) =0.
If y> —B* # 0, then the cross-ratio

(C—A)/(C—B) _ B(C—A)
(M —A)/(M—B) A —B)

is a real number. But this implies that M is on the circumcircle
of AABC, contradicting the fact that M is in the interior of the

2

triangle. Thus y? = B?, and > = y? as well. It follows that

b === %, and hence, M is the centroid of AABC.

@ There are n» white and » black balls placed randomly on
the circumference of a circle. Starting from a certain
white ball, number all white balls in a clockwise direction
by 1, 2, ==, n. Likewise, number all black balls by
1, 2, +*=, n in an anti-clockwise direction starting from a
certain black ball. Prove that there exist consecutive n
balls whose numbering forms the set {1, 2, ==, n}.

Proof Choose a black ball and a white ball with the same

number, and the number of balls between the two balls is

minimum. We can suppose the number of the two balls is 1.

Firstly, we shall prove that the balls between the two balls

have the same color.
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In fact, if they are of different color,
then the white ball and the black ball, each
is numbered by n, are between the two ball
(See Fig. 1). This is a contradiction to the
point that number of balls between the two

balls (labelled by ‘17 s) is a minimum.

Fig. 1

Secondly, if the balls between the two
balls (labelled by “1’s) are white, we have
two cases.

Case 1 The number of the white balls
are 2, *-, k. See Fig. 2, then from the
white balls (labelled by ‘17 s) in

anti-clockwise direction we can get a chain

of n balls whose numbering forms the
set {1, 2, ===, n}.

Case 2 The number of the white balls
arck, k +1, *=-, n (See Fig.3), then from 1 %
the white ball (labelled by “17 s) in
clockwise direction we can have a chain of n
balls that satisfies the condition.

The same argument can prove that the
claim holds, if the balls between the two Fig.3
balls (labelled by ‘1’s) are black, or there are no ball between

them.



China Southeastern
Mathematical Olympiad

2007

The fourth (2007) China Southeastern Mathematical Olympiad
was held from 25 to 30 July, 2007 in Zhenhai, Zhejiang,
China, and was hosted by the Southeastern Mathematical
Society and Zhenhai High School. About 200 students of grade
10, from Fujian, Zhejiang and Jiangxi province, formed 39
teams to take part in the competition. Apart from these three
provinces, teams from Hongkong, Shanghai and Guangdong
were also invited to participate in the competition. The purpose

of this competition is to provide students with a platform for an
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exchange of Mathematical Olympiad Problems. Besides the
competition, there were also lectures delivered by experts and
activities for teachers and students to exchange ideas.

The Competition Committee comprises the following: Tao
Pingsheng, Li Shenghong, Zhang Pengcheng, Jin Mengwei and

Yang Xiaoming.

First Day
0800-1200 July 27,2007

@» How many integers a satisfy the condition: for each a,
the equation * = ax +a + 1 with respect to x has roots
which are even and | = | << 1000.

Solution ] Letxz, = 2n, where » is an integer and | 2n | << 1000,

then | n | << 499. So we can choose at most 2 X 499 + 1 = 999

numbers, that is, n € {— 499, — 498, -, 0, 1, ==, 499}.

. - g ' _ 8=
Substituting z, = 2n into the equation. we geta = 1
Set £ln) = 8 =1 hen for any #nis ns € {— 499,
Dy +1 ’ 19 2

_498! -y Og 1! et | 499} (n1 ?!: MNay My N2 © Z). If

fn,) = f(n,), we can suppose n, = %, n, = %, where x, ,
x, are roots of x> —ax —a —1 = 0. Suppose the other root is 3,

then according to the sums and products of roots, we obtain

I3 :_(I'[ +-T2)r
Z1ZLs +I2.I'3 +I3I1 ="d,

1Ty — a +1,

that iS!
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4N, =—a,
{SNz =g +1,
where N, =— (n} +n} +nin,)y N =—n,n,(n, +n,), then
4N, +8N, = 1. Contradiction!

Thus, for anyn, n, € {—499, —498, -+, 0, 1, ===, 499},
we have f(n) # f(n,), which means there are exactly 999 real
numbers a that satisfy the condition.

Solution [ Our aim is to prove that for any even integer

*.
which satisfies | = | << 998, the value of a = II T 11 is different.

On the contrary, if there exist xy # x, that satisfy

xd—1 =I§—1
I1+1 I2+1

, where x,, x, are even numbers, then

(1 —x2 ) (23xs + 122 + 322 + 22 + 2022 +1) = 0.

Since x; #xy =>xy —x, F0and 23z + 2125 +2? +22 +x21x;

is an even number, we obtain
(x, —x:)(Z3xs + 123 + 23 + 23 + 2922 +1) #0.

Contradiction !
Thus, there exist 999 real numbers a that satisfy the

condition.

@P» As shown in the figure, points C and D are on the
semicircle with O as its center and AB as its diameter.
The tangent line to the semicircle at point B meets the
line CD at point P. Line PO intersects CA and AD at
point E and F respectively. Prove: OE = OF.

Proof | Draw line segments OM and MN, such that

OM | CD, MN // AD. Let MN NBA =N,CN NDA =K,

and connect BC and BM, then we get
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ZNBC = LADC = £ZNMC,

which means points N, B, M, C are concyclic. Since O, B,

P, M are also concyclic points, we obtain
~ZOPM = /OBM = 180° — /MCN,

thus CN // OP and

CN _AN _ NK 0
OE AO OF-

Since M is the midpoint of CD,
MN // DK, then we get that N
is the midpoint of CK. Hence,
according to (@O, we have
OE = OF as desired.

Proof [ As shown in the
figure, draw OM | CD with M as
the foot of the perpendicular, and
connect BC, BM, BD and BE.
SinceOM | CD, PB | AB, then
O, B, P, M are concyclic points.

Hence,

ZBMP = /BOP = LAOE, ZEAO = /BDM

AE _ AO _ AB
= MNOAE «» AMDB, BD DM — CD
= MNBAE «v» ACDB, #/EBA = /BCD = /BAD

OE _0B _
=AD // BE, &2 =5x = 1.

Therefore, we have OE = OF as desired.

@ Suppose a; = min{k +;—. | & € N* }, find the value of
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S,: =[a,]+[as] ++ +[a,2], where n=2, and [z ]
denotes the greatest integer less than or equal to x.
Solution Set

a,-+1=min{k+1“|keN° =k1+i;—1(k.6N‘);
1
then
rad e
k +k1 <k + k1 arv—l‘

which means {a, } is a monotonic increasing sequence. Since & +
m 2
k
havea,? =2m(m € N").

On the other hand,

= 2m (where the equality holds if and only if 2 = m), we

m(m +1)

k+ 3

=2m +1

whenk =m, m + 1. But whenk <mork =m +1, we get
(k —m) (k —m —1) =0, which means

2—Cm+1DE+mm +1) =0

mGn +1)

=k + 7

=2m +1.

Thus, we have a,,2, = 2m + 1. Moreover, with regards to the
monotonicity of {a,}, we have 2m +1 < a; <2(m + 1) when
m? +m <i << Gm +1)%. Hence,

2m, m® <i <m®+m,
[a:] = 3
2m +1, m? +m <i < (m +1)%

Therefore,

m 2+2m

E [a;]=2mem+Cm+1)+ (m+1)
2

=4m? +3m +1,
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and

n—1
S,2 = > (4m? +3m +1) +2n

m=1

_axnn—DCn—1) , 5 nn—1)
6 2
8in° — 3 +13—6
3 .

+(n—1) +2n

@» Find the smallest positive integer » such that any sequence

of positive integers a;, a», ***, a, satisfying Za,- = 2007

=1

must have several consecutive terms whose sum is 30.
Solution Firstly, we could construct a sequence of positive
integers with 1017 terms ay, az, ***, a7, such that we cannot
find consecutive terms whose sum is 30. Hence, we could
seta; =a; =+ =ay =1y,ax =31 and aGyu=s = dais
: € {1, 2, ==+, 30}, m € N, which means the sequence is 1,
Ty ooy 15 31, |1, 1, ooy 1, 315 [y =0y [1, 1, =5 1, 31,1,
1, ==, 1(in which there are 34 groups all have 30 terms except
the last group with 27 terms, totalling 1017 terms) .

Secondly, when the terms are less than 1017, what we
should do is just to combine several consecutive terms into a
larger number within certain groups of the sequence.

Now, for any sequence with 1018 terms a;, azy ***y @015
1018
that satisfies the condition »)a; = 2007, we want to prove that

=1
there must exist several consecutive terms whose sum is 30.
&
Denote Sy = Y,a:s k =1, 2, =+, 1018, then
i=1
1 g Sj e Sz < v S]u]g = 2007.

Group the elements in the set {1, 2, *+», 2007} as follows:
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(19 31)! (2! 32), b (30, 60);
(61, 91), (62, 92), -+, (90, 120);
(121, 151>, (122, 152), ---, (150, 180);

(60k +1, 60k +31), (60F +2, 60k +32), -=-, (60F& +30,
60Ck +1));

------------------------------

(60 = 32+1, 60+ 32+31), (60 +32+2, 60 » 32+32), +,
(60 = 32+30, 60+ 33);
1981, 1982, ---, 2007.

There are 33 X 30 = 990 brackets and 27 numbers
without brackets. Arbitrarily take 1018 numbers, whose
sum is the value of S,. There must be two numbers from the
same bracket. Denote the two numbers by (S;, Siw. ),then

Siim —S: = 30, which means,
a g+ +Q,H-2 + e +ak+,,, = 30,

Therefore, the minimum of n is 1018.

Second Day
0800 - 1200 July 28, 2007

@& Let f(2):f(xz +1) — f(z) =2z +1(z € R), and
| f(z) |<1whenz € [0, 1]. Prove:

| flx) |<2+z*(x € R).
Proof Letg(x) = f(x) —?, then

glx+1) —glz) = flx+1) — flz) — (x +1)* + 22
=0,
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Thus, g(x) is a periodic function with 1 as its period. On the

other hand, as is given | f(z) |<1whenz € [0, 1], so
| g(x) | =| flz) —=% | <] flz) |+ =2 | <2,

whenz € [0, 1].
Therefore, the periodic function g (x) satisfies | g(z) | <

2(x € R), thus arriving at

| f(2) | =] glx) +22 |<| gl@) |+ 22 |
<2+z2*(x € R),

as desired.

@» As shown in the figure, in the
right-angle triangle ABC, D is
the midpoint of the hypotenuse
AB, MB | AB, MD intersects
AC at N, and MC is extended to
intersect AB at E. Prove:
~ZDBN = /BCE.

Proof Extend ME to intersect the circumscribed circle of
ANABC at F, and MD to intersect AF at K. Draw CG / MK,
which meet AF, AB at G and P respectively. On the other
hand, draw DH | CF with H as the foot of the perpendicular,
then H is the midpoint of CF. Connect HB, HP, then D, H,

B, M are concyclic, that is,
Z/HBD = /HMD = ZHCP.
Hence, H, B, C, P are also concyclic, which means
/PHC = /ABC = /AFC

and PH // AF. Therefore, PH is the midline of ACFG and P
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is the midpoint of CG, then AP is the median to CG in AACG.

Moreover, from NK // CG, we get that D is the midpoint
of NK. In other words, AB and NK bisect each other. Therefore,
/DBN = /DAK, and

/DAK = /BAF = /BCF = /BCE,
then we prove /DBN = /BCE as desired.

@ Find the array of prime numbers (a, b, ¢) satisfying
conditions as follows:
(1) a < b <c¢ < 100, where a, b, ¢ are all prime
numbers;
(2) a +1, 6 + 1, ¢ + 1 constitute the geometric
progression.

Solution From condition (2), we get
(a+1+1)=0G+D%. )

Seta +1=n’z, c +1 =m?y, with no square factor larger than
1in x, y, then we could get that x = y. This is due to the fact

that from (IO), we have
(mn)zy = (b +1)?, ®@
which means mn | (b +1). Seth +1 = mn « w, then @ can be
simplified to
zy = w?, ©)
If w > 1, then the prime number p, | w=>p7 | w?. As there is no

square factor larger than 1 in =, y, then p, |z and p,|y. Now

setx = prxis y = p1yis w = pyw;. Then @ can be simplified to
L1V =wf. @

If w, > 1 still exists, then there will be a new prime number
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P> | w,=p3 | wi. As there is no square factor larger than 1 in

Zis y1» then po|x, and p,|y,. Now set
Ty = PaZas Y1 = PaY2sy w1 = Prwa.

Then @ can be simplified to x>y, = w3, *-. Since there are
finite prime factors of w in 3, then carrying on as above, we
obtain that there exists r, such that w, = 1. z,y, = w?
=z, =y, =1, we havex = pp, *** p, = vy as desired. Now

we can set x = y = k, and have

a =kn?—1,
b =Fkmn—1, ®

c =km?*—1,
where
1 <m <l il =56 <2100; ®

with no square factor larger than 1 in & and £ # 1. Otherwise, if
k =1, thenc = m? — 1. As c is larger than the third prime
number 5, thusc =m? —1 >5=>m =3 and

=m?—1=(m—1)0lmn+1)

is a composite number. Contradiction! Hence, & is either a
prime number, or the product of several different prime
numbers (that is, £ is larger than 1 and with no square factor

larger than 1 in £). We say that “£ has the property p”.

(a) From ®, m = 2. When m = 2, then n = 1 and
a=kFk—1,
b =2k —1, Since c < 100=k < 25, then if £ =1(mod 3), we
c =4k —1.
get 3|c and ¢ > 3, which means c¢ is a composite number.

If £ =2 (mod 3), then when it is even, the % satisfying the
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property p is 2 or 14, where the correspondinga =2—1 =1 and
=2+ 14 —1 = 27 are not prime numbers. On the other hand,
when it is odd, the %k satisfying the property p is 5, 11, 17 or
23, where all the corresponding ¢ = & — 1 are not prime
numbers.
If £ =0 (mod 3), the £ satisfying the property p is 3, 6, 15
or 21. When £ = 3, we get the first solution

fl =(a9 b'! f)=(21 55 11).
When £ = 6, the second solution is
f3=(0.9 b! C)=(5; 11, 23).

But when £ = 15, 21, the corresponding a = k& —1 are not
prime numbers.
(b) Whenm =3, thenn =2or 1. If m =3, n =2, we have
a =4k —1,
b =6k —1, Since ¢ << 97=k < 10, then the £ satisfying the
c =9 —1.
property p is 2, 3, 5, 6, 7 or 10.
Whenkt = 3, 5, 7, the corresponding ¢ = 9% — 1 are all
composite numbers.
Whenk = 6, b = 6k — 1 = 35, which is a composite
number.
Whent =10, a = 4k —1 = 39, which is also a composite

number. But when 4 = 2, we get the third solution

f3 =(a, b, ¢c) = (7, 11, 17).

a zk_ls
Ifm =3,n =1, we have<b =3k —1, Ask < 10, the &k
c =9 —1.

satisfying the property p is2, 3, 5, 6, 7or 10. Whenk =3, 5, 7,
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the corresponding & = 3k — 1 are all composite numbers. When
k =2, 10, the correspondinga = k& —1 are not prime numbers.

But when £ = 6, we get the fourth solution
f4 = (av ()9 f) = (5, 17, 53)

(c) Whenm = 4, fromc = 16k —1 << 97=k < 6, then the
k satisfying the property p is 2, 3, 5 or 6. When £ = 6,
¢ =16« 6 —1 = 95, which is a composite number. When £ = 5,
& = 5?’!2 — 1; .
then Asn <m =4, n can be 1, 2, 3, which
b =20n —1.

means at least one of a, b is not a prime number.
& =3n2—1,
When £ = 3, ¢ = 48 — 1 = 47 and .

Considering n << m = 4, the corresponding a, b are both
composite numbers if » = 3. But, if n = 2, we get the

fifth solution

fs =(a, b, ¢) = (11, 23, 47).
If n = 1, we get the sixth solution

fe =Ca, b, c) = (2,11, 47).

a =2n%—1,

Whenkt =2, ¢c =16k —1 = 31 and{b i Since

n <m = 4, the seventh solution
f7 =", b, c) =017, 23, 31)

exists if n = 3.

(d) Whenm =5, thenc =25k —1 <97 and the % satisfying
the property p is 2 or 3, but the corresponding ¢ = 25k — 1 are
both composite numbers.

(e) Whenm =6, thenc =36k —1 <97 and the % satisfying
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the property p is 2. Hence, ¢ = 2 « 36 — 1 = 71 and

a =2n*—1, . .
Asn <m = 6, the cighth solution

fa = (ag b, C) = (79 239 71)
exists if n = 2, and the ninth solution
fo =(a, b, ¢c) = (31, 47, 71)

exists if n = 4,
(f) Whenm =7, thenc =49 —1 <97 and the % satisfying
the property p is 2. Hence, ¢ = 2 « 49 — 1 = 97 and

a =2n*—1, p
Asn <m = 7, the tenth solution
b =14n — 1.

fio =, b,c)=0U7, 41, 97)
exists if » = 3, and the eleventh solution
fu =, b, ¢) = (71, 83, 97)

exists if n = 6.
(g) Whenm =8, thenc =64k —1 <97, but the £ satisfying
the property p does not exist.

Therefore, there are 11 possible solutions, namely

fl-r fzv i | fil-

@» Given real numbers a, b, ¢ such thatabc = 1, prove that

for all the integersk =2

at bt ¢ 3
o
a—l—b+b+c+c—|—a/2'
Proof Since
a* 1 $on. BF_&
a-H) (a+b)+2+2+ +2 =k Zk—za,

~~
=2
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then
ai_:?)— 2%{1 —%(a +8&) _k_;Z_
Similarly,
Aok Le o222
Cia;a%c—%%c+a)—é§3

Adding the three inequalities above, we obtain

at b* ct
a+b+b+c+c—l—a
= ®e 18 — LG it —2g =2
=D 2 %)
_k—1 Sy
- (a +b +¢) 2(k 2)
3 3
St == o _
/2(;& 1 2(k 2)
:1
2‘
as desired.

Remark The problem could also be proved by the Cauchy
inequality or the Chebyshev inequality.

2008

The fifth (2008) China Southeastern Mathematical Olympiad
was held from 26 to 30 July 2007 in Longyan, Fujian, China,

and was hosted by Southeastern Mathematical Society and
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Longyan No. 1 High School.

The Competition Committee comprises the following: Li
Shenghong, Tao Pingsheng, Zhang Pengcheng, Sun Wenxian,
Yang Xiaoming, Zhang Zhengjiec, Wu Weichao and Zheng
Zhongyi.

First Day
0800 -1200 July 27,2008

@& [t is given the set S = {1, 2, 3, **-, 3n}, where n is a
positive integer. T is a subset of S such that: for any
x, v,z €T (where =, y, 2 can be the same),
x +y+z & T. Find the maximum value of the number
of elements in such set.

Solution SetT, ={n+1,n+2, =+, 3n}, where | T, | =2n

and the sum of any three elements in Ty is larger than 3», that

is to say, the sum does not belong to T,. Thus, max | T | =2n.

On the other hand, construct a sequence of sets

Au = {ny 2??.9 3”}’
A,@ = {ks 2n _k; 2n +k}s k :19 2! R _15

then S =:_l__J:] A,. For any subset T’ in S which has 2n + 1

elements, it must contain a certain A;.
If A, © T, it contains the element 3n = n +n +n.
If a certainA, cT', k € {1, 2, =+, n — 1}, it will contain

the element
2n +k =k +kE+QCn—Fk),

thenmax | T | <2n +1. That is, max | T | = 2a.
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@) 1t is given the sequence {a,} : a; =1,
Any = zan +n . (1 +2“)! n = 1! 2; 3! b

Find the general term a,.

Solution Divide the recursion formula by 2""' throughout, we

obtain
Ayt ay n 7
2n+': = 2_n +2n+1 +3’
that is,
Ayt Ay n n
2n+11 5 = 2r|+1 +'E
Then
n EJ-;I a_i' _ n ; n i
i=1 (2H—l 21) i=1 2'H_] + i=1 2 d
At a nln +1) E 1
—r b o e
211-'—1 21 4 ; 2:+I
_ o [n(n +1) +i +ii LJ
Ant 4 on ) L4 o
SetS, = D, %, then2S, = >, %, and
i=1 i=1
S, =28,—S, = Z#—Z%
i=1 i=1
_ n L B ntl1 3 _]_
= —1 praer 2! 1
1 _n+1—1, (i _i—1
= —] Arl— + A B i—
2| 1 2 1= 2(2 1 2 1 )
T S ) 1
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-1
—1 _% +1 _2“1_1
=9 ??24“—2
Thus,

43 (n+1) +2
- I[E+n n4 _ner

Consequently,

a, =22 —n+6) —n—1 (n=2).

&» In ANABC, BC > AB, BD
bisects ~~ABC and intersects
AC at D. As shown in the
figure, CP | BD with P as
the foot of perpendicular
and AQ | BP with Q as the
foot of perpendicular. Points

M and E are the midpoints of AC and BC respectively.
The circumscribed circle O of APQM intersects AC at the
point H. Prove that O, H, E, M are concyclic.
Proof Extend AQ to intersect BC at point N, then Q, M are
the midpoints of AN and AC respectively. Thus QM // BC, and

/PQM = /PBC = %LABC.
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Similarly, /MPQ = - ZABC. Then QU = PM.
Since Q, H, P, M are concyclic, we have
/PHC = /PHM = /PQM,
that is, LPHC = «PBC. Therefore, P, H, B, C are

concyclic and

£BHC = £ZBPC = 90°.

Hence,

HE = %BC — EP.

Since OH = OP, we know that OE is the perpendicular
bisector of HP. Also, /MPQ = %AABC and E is the

midpoint of BC, we conclude that P, M and E are collinear.
Consequently,

ZEHO = /EPO = Z/OPM = /OMP

and O, H, E, M are concyclic.

@» Given positive integersm , n =2, first select two different

a;» a;(j >1) in the integer set A = {a,, a2, ***y a,} and
n
take the difference a; — a; . Then arrange the (2)

differences in ascending order to form a new sequence,
which we call “derived sequence’ and is denoted by A.
The number of elements in A that can be divided by m is
denoted by A (m). Prove that for any m = 2, the
corresponding derived sequences A and B, with regard to

A ={ay, azy ***y a,} and B = {1, 2, -+, n}, satisfy the
inequality A m) = B(m).
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Proof For any integerm =2, if the remainder of x divided by
misi,i € {0, 1, *=-, m —1}, then = belongs to the residue class
modulus m, K;.

Suppose in the set A = {a;, a;, ***, a,}, the number of
elements that belong to K; isn;(z =0, 1, 2, ===, m — 1), while
in the set B = {1, 2, *--, n}, the number of elements that
belong to K; isn; (i =0, 1, 2, ***, m — 1), then

m—1 m—1
2 n; = E n : =M. @
i=0 i=0
It is obvious that for everyi, j, |n,"—n," |<1,andz —yisa
multiple of m if and only if =, y belong to the same residue

class. As to any two elementsa;, a; in K;, we havem | a; —a;.
: ni .
Hence, the n; elements in K; form ( 4 ) multiples of m.

Considering all the 7, we obtain

Alm) = E(Z‘).
Similarly,
m=1

BGm) = E(Z)

i=0

Hence, to solve the problem, we just need to prove that

m—1 m—1

Z:;}(“_ ) 92{](2 ) , and it can be simplified to

Siur s Siak ®
i=0 i=0
From @, if for everyi, j, | n; —n; | <1, thenng, n1y ***5 7,
andny, n’y, **+, n’, must be the same group (in spite of the
different order), and equality holds in @. Otherwise, if there

exist 7, j, such thatn; —n; =2, then we should just change the
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two elements n;, n; for n;, n; respectively, wheren; =n; —1,
?_i'j =MNj +1g and?’!; +?’IJ' =ﬁj +?le. Sincc
n?+n}) —n?+n}) =2(n; —n; —1) >0,

the sum of the left side in @ will decrease after adjustment.
Therefore, the minimum value of (@ is attained if and only if
Moy Niy ***y Ny and nly, 7'y =+, n),y are the same group (in

spite of the different order), that is, the inequality @ holds.

Second Day
0800 - 1230 July 28,2008

@P Find the largest positive number A such that

| Azy + yz Ié“%g, where 2 +y? +22 = 1.

Solution Note that
1=z*+y+2?

A’ 1
= TTepY trag?

2
=—=—Q |zy |+ ¥z )
V1422
2
>—=— (| Azy +yz ),
V1422
and the two equalities hold simultaneously when
S S S
2 2/2% +1 2/2% +1

5 is the maximum value of | Azy + yz |. Let

Thus,
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2
@ = \/75 We obtain thatA = 2.

@ As shown in the figure, BC and
AC are tangent to the inscribed
circle I of AABC at M and N. E
and F are the midpoints of AB,
AC respectively. EF intersects BI
at D. Prove that M, N, D are
collinear.

Proof Join AD, and it is obvious that Z~ADB = 90°. Then

join AI and DM. Suppose DM intersects AC at G. Since

_ . AB _ Bl
ZABI = /DBM, we obtamBD BV Hence, NABI «» ADBM,

and
/DMB = /AIB = 90° +%4ACB.

Join IG, IC, IM, then

ZIMG = /DMB —9%° = % ZACB = /GCI.
Therefore, I, M, C, G are concyclic, and IG | AC.
Consequently, since G and N represent the same point, we

conclude that M, N, D are collinear.

@P» Captain Jack and his
pirates robbed 6 boxes of n
gold coins A;, A,, As,

A,y As, Aq. There are a; H H H H
coins in boxA;(: =1, 2, |
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3,4,5,6)anda; # a;(i #j). They laid the boxes as
shown in the figure. Captain Jack would take turns with
a nominated pirate to choose a box. The rule was: Each
person could only choose a box which was adjacent to at
most one box. If Captain Jack got more gold coins than
the pirates, then Captain won the game. If Captain Jack
went first, what should be his strategy to win the game?
Solution When there are 2 boxes, Captain Jack will naturally
win the game.
Lemma 1 When there are 4 boxes, Captain Jack would
also have a strategy to win the game.
How is it? Since there are 4 boxes, then there are two ways

to link them.

8 Bags

Case 1 Case 2

Case 1

In the first round, Captain Jack has the three outer boxes
to choose from, it is certain he will choose the one having most
coins, while the pirate could only choose one from the other
two. Anyway, they cannot choose the one in the centre. After
the first round, Captain Jack would have more coins than the
pirate. Then, there are only 2 remaining boxes, Captain Jack
will surely choose the one having more coins and win the game.

Case 2

Paint 4 boxes in black and white and arrange as shown in
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the figure. If there are more coins in

black boxes than in the white ones, D—D—D—D

Captain Jack will take the black box
first, forcing pirate to take the white one, and after that,
Captain Jack will take the other black box and win the game.

Now let us examine the original problem.

If ag = a5, Captain Jack could take the available box that
has the most coins, then the pirate takes one. And this problem
would be simplified to “4 boxes” problem in Lemma 1.

Otherwise, if as > a4, we can assume a; > a», and paint
ais as, as black, while the rest white, as shown in the figure.
Then, we should check whether if
a, +as +as =a, tas +agor not. u
If it is, Captain Jack could take
all the white boxes and win the
game. If not, he could take a; H u H I H
first, then

(1) If the pirate takes a,, then Captain Jack takes a, and
a4 to win the game.

(2) If the pirate takes a,, sincea; >>a,, then Captain Jack
takes a;. Although he could not have taken all the black boxes,
but since a; > a,, he could also win the game.

(3) If the pirate takes a5, then Captain Jack takes a4, and

(a) If the pirate takes a,, Captain Jack could take a,
to win

(b) If the pirate takes a,, since a; > a,, Captain Jack
could take a, to win.

Therefore, Captain Jack has always a strategy to win the

game.
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@ Let n be a positive integer, and f(n) denote the number
of n-digit integers a,as+a, (called wave number) that
satisfy the following conditions:

() a; € {1,2,3,4},anda; a1 =1, 2, =

(ii) Whenn =3, the numbersa; —a;+ anda;y; —a;» have
opposite signs, z = 1, 2, ==,

Find (1) the value of f(10),

(2) the remainder of f(2008) divided by 13.

Solution (1) Whenn =2, ifa; <a,, a,a,*+a, is classified as

A class. The number of a;a;+++a, is denoted by g(n). If a; > as,

then aiaz*++a, is classified as B class. By symmetry, the number

of such a,a,*-a, is also g(n). Thus, f(n) = 2g(n).
Now we want to find g (n). Denote m, (i) as the k-digit

“A wave number” whose last digitis: (: =1, 2, 3, 4), then

4
gn) = > m,@).
i=1

Asay—y <axy, ax > au» we have the following 2 cases.

(a) When £ is even, m;,(4) = 0, mp1 (3) = m,(4),
Mmp(2) = me(4) +me(3)y mpp (1) = m(4) +m,(3) +
m;(2).

(b) When £ is odd, m (1) = 0, mp,(2) = m,(1),
mp(3) = m, (1) + m(2)y, mp@) = m,; (1) +m,(2) +
m(3). It is obvious that m,(1) =0, m,(2) =1, m,(3) =2,
m,(4) =3, then, g(2) = 6.

Hence,
ms(1) =m,(2) +m,(3) +m,(4) =6,
m3(2) =m,(3) +m,(4) =5,
mi1(3) =m,(4) =3, m;(4) =0,
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Therefore

g3 = Ema(i) =14,

=]

On the other hand, since
m4(1) =0, m,(2) =m;(1) =6,
m4(3) =m;(1) +m3(2) =11,
my(4) =m3(1) +m;3(2) +m3(3) =14,

we obtain,

g4 = Em(i) =31,

In the same way, we could get g(5) = 70, g(6) = 157,
g(7) =353,g(8) =793,
Then, in general, whenn =5,

gn) =2gn—1) +gn —2) —gln —3). ©)

Now we prove @ as follows.
Using mathematical induction, we are done whenn =5, 6,
7, 8. Suppose @ holds when for 5, 6, 7, 8-+, n, now consider

the case for n + 1. When # is even, from (a), (b), we have
My (4) =0, my (3) =m,(4),
m, (2) =m,(4) +m,(3),
M1 (1) =m,(4) +m,(3) +m,(2).

Asm,(1) =0, then

= 2(Z4jm,,<s)) +m, (4) —m,(2)
i=1
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=2g(n) +m,(4) —m,(2).
Since

mu(‘i) = m,._l(l) +m,._1(2) +m,._1(3) -+ 0

= i]:m,,_1(i) =gln—1),
m,2) =m, (1) =m,>4) +m,>3) +m,»(2) +0
=gln —2).
We obtain,

gln +1) =2g) +gn —1) —gln —2).

4
On the other hand, when n is odd, g(n +1) = Em,,ﬂ (i).
=1
Sil’lCCm,,.H(‘f) — 0; m,,.,.1(2) = m,,(1), m,,(4) — Ug
mu(3) =m,(1) +m,(2),

mu @) =m,(1) +m,(2) +m,(3),

then,
4
gln+1) = Em,&l(i)
i=1
=2 >m,G) +m,(1) —m,(3)
=1
=2g(n) +m,(1) —m,(3).
Since

m,(1) =m, 4) +m,,(3) +m,,(2) +0 =gn —1),

m,,(3) =m,,—1(4) = m"—-z(l) +m"—2(2) +m,,—z(3) ()
=gln —2).

We get

gn+1) =2gn) +gn —1) —gln —2).
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Hence, @ holds for n +1. By mathematical induction, @ holds
whenn = 5.
From @,

g(9) =2g(8) +g(7) —g(6) = 1782,
g(10) =2g(9) +g(8) —g(D

4004,
Thus,
£10) = 2g(10) = 8008.

(2) Now consider the sequence of remainders of {g (n)}
divided by 13. From @, whenn = 2, 3, 4, -, 14, 15, 16,
17, +=+, the corresponding remainders are 6, 1, 5, 5, 1, 2, 0,
15 05 1515 35 6515 55 Bgoee

Therefore, when n = 2, the sequence of remainders is a

periodic sequence whose minimum period is 12. As
2008 =12 X 167 +4,
we get
g(2008) =5 (mod 13),
Therefore,

£(2008) =10 (mod 13).
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First Day
0900 - 1300 July 25,2007

@» Recal numbers a;, a», ***, a, are given. For each i
(1 <i=<n), define

d; =max{a;:1 <j <i} —minfa;:i <j <n},
and let

d =max{d,—:l -~.‘<,~Z. én}.
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(1) Prove that: for any real numbers r, <z, <+ <z,

max{|x.-—a.—|:1-€ién}2%. )

(2) Show that there are real numbers z;, <z, <+ <=z,
such that equality holds in .
Solution (1) Define
d=d,(1<g<n),
a, =max{a;:1<j <g},
a, =min{a;:g <j <n}.

This yields1 < p < g <r <nandd =a, —a,.
It is worthwhile to observe that for any real numbers

By KL R KTy
(ap—an ) T-Xa: —ay) = @y —ax) +CGo—ap)

=Za, —a, =d.

Consequently,

Hence
max{| z;: —a; |:1 <i <n} >2max{| z, —a, |, | z. —a, |}

=maxia, —xps Ty — a8}

=

\Y%
e

s

(2) Define the sequence {z,} as =y = a; — %

Xp = Max{Tir1s A —% y (2B S m).

Now we will prove that for the above sequence the equality
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holds in @D.

By definition of {x,}, {z:} is a non-decreasing sequence,

and z, —a, 2—%for allk (1 <k <n).

In the following, we prove for all £ (1 <k <n)

Iy — Ay g

d
2° ®
For any £ (1 <<k <<n), let! (Il <k) be the smallest integer such

that x, = x;,. Hence!/ =1or! =2and x; > x;-.
In both cases,

holds.

Since

a; —a; <max{a;:1 <j <k} —min{a;:k <j <n} <d,
in view of @, we know

d d

X ag ay g 2 2

This establishes @). Thus

d
Eéx;, —a é%

holds for all 1 < %, << n, hence also
; d
max{| z; —a; [:1 <i <n} <35
In view of part (1), the equality holds in O for the
sequence {x; }.

An alternative solution of part (2).

For eachi (1 <i < n), define
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M; = max{a;:1 <j <i}, m; =min{a;:i <j <n}.

Then
M,: zmax{a‘]s "ty a,'} Qmax{a“ "ty s ai—.-—l} :MH-T’
m; — min{a;, Airgs **%s ﬂ.ﬂ} Qmin{am g TN G.,,} =M.

It is also worthwhile to observe thatm; <a; < M,.

Take sy SO L T2 ;L’"", byd: =M, —m; yields
d _m; —M
—_—— L ¢ = — + < T—
> > i —M; <z —a;
_M, —m; d,:
Lxp—m; = D) =5

Consequently,

max{| x; —a; |:1 <k <n) <max %:1 <i<n =%.

In view of part (1), the equality holds in O for the sequence

{az:}.

@) Consider five points A, B, C, D and E such that ABCD
is a parallelogram and BCED is a cyclic quadrilateral. Let
[ be a line passing through A. Suppose that / intersects
the interior of the segment DC at F and intersects line BC
at G. Suppose also that EF = EG = EC. Prove that [ is
the bisector of /DAB. ;
Proof Draw the altitudes of two & C_L /
isosceles triangles EGC and ECF as in

the figure.
In view of the given condition, it is
easy to see that AADF o» AGCF. Hence A D
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GE CF 66 ©F GL €K
_ BC+CL _ DF +FK

AD _ DF __  BC _ DF_ BC _ DF

e, €K
BL DK
=CL ~CK
BL _CL
DK T CK’ @

Since BCED is a cyclic quadrilateral, ~LBE = /EDK, this
yields ABLE «» ADKE , where both are right-angled triangles.

BL _ EL

30 DK T EK’ @
CL __ EL
In view of (D) and @), == CK " EK’ this means ACLE «» ACKE.
Thus
CL _CE _,
CK CE 4

i.e. CL = CK=CG = CF.
It is intuitively obvious that /BAG = ZGAD. Hence [ is

the bisector.

@» In a mathematical competition some competitors are
friends. Friendship is always mutual. Call a group of
competitors a clique if each two of them are friends.
(In particular, any group of fewer than two
competitors is a clique. ) The number of members of a
clique is called its size.

Given that, in this competition, the size of the largest
clique is even, prove that the competitors can be arranged

in two rooms such that the largest size of a clique
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contained in one room is the same as the largest size of a

clique contained in the other room.
Proof We provide an algorithm to distribute the competitors.

Denote the rooms A and B. At some initial stage, we move
one person at a time from one room to the other one. We
achieve the target by going through several adjustments. In
every step of the algorithm, let A and B be the sets of
competitors in room A and B. Let C(A) and C(B) be the
largest size of clique in room A and B respectively.

Step 1: Let M be the largest clique of all competitors,
| M | = 2m.

Move all members of M to room A, and the remained ones
to room B.

Since M is the largest clique of all competitors, we have
C(A) =|M | =C(B).

Step 2: If C(A) =>C(B), move one person from room A to
room B. (In view of C(A) > C(B), we have A # . )

After every operation is done, C(A) decreases by 1 while
C (B) increases by 1 at most. These operations will not

end until
CA) <C(B) <C(A) +1,

At that time, we also have C(A) =| A | = m. (Otherwise
there are at least .z +1 members of M in room B, at mostm —1
members in room A, thenC(B) —C(A) =(m +1) —(m —1) =2,
it is impossible. )

Step 3: Denote K = C(A). If C(B) = K, we are done; or

else C(B) = K + 1. From the above discussion,

K=[A|=|ANM|=m, |BNM|<m.
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Step 4: If there is a clique C in room B with | C | = K +1
and a competitorxr € B (1 M butx ¢ C, then move x to room
A, we are done.

In fact, after the operation, there are K + 1 members of M
in room A, soC(A) =K +1. Sincex ¢ C, whose removal does
not reduce C, C(B) = C. Therefore, C(A) =C(B) =K +1.

If such competitor = does not exist, then each largest clique in
room B contains B N M as a subset. In this case, we do step 5.

Step 5: Choose any of the largest clique C (| C | =K +1) in
room B, move a member of C\M to room A. (In view of
|C|=K+1>m=|BNM|, we knowC\M # &. )

Since we only move one person at a time from room B to
room A, so C(B) decreases by 1 at most. At the end of this
step, we have C(B) = K,

Now, thereis a clique A N MinA, | A NM |=K. So
C(A) =K.

We prove C(A) = K as follows.

Let Q be any clique of room A. We only need to show
| Q [<K.

In fact, the members of room A can be classified into two:

(1) Some members of M in view of M being a clique, are
friends with all the members of B N M.

(2) The members move from room B to room A at step 5,
they are friends of B N M.

So, every member of Q and members of B N M are friends.
What is more, Q and B N M both are cliques, so is
Q U (B N M).

Since M is the largest clique of all competitors,

IM|=IQUMBNAOAM |=|Q|+IBNM|
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=lQI+IM[-|ANM]|.

So|Q|<|A NM|= K. Therefore, after these 5 steps, we
have C(A) = C(B) =K.

Second Day
0900 -1330 July 26,2007

@D In triangle ABC the bisector of angle BCA intersects
the circumcircle at R, the perpendicular bisector of

BC at P, and the perpendicular bisector of AC at Q.

The midpoint of BC is K and the midpoint of AC is

L. Prove that the triangles RPK and RQL have the

same area.
Proof

If AC = BC, AABC is an isosceles triangle, and CR is the
symmetry axis of ARQL and ARPK. The conclusion is
obviously true.

If AC # BC, without loss of
generality, let AC < BC. Denote the
center of circumcircle of AABC by O.

Since the right triangles CQL and

CPK are similar,

T s QL _ CQ
/CPK = /CQL = £0QP, and PK (P @

Let ! be the perpendicular bisector of CR, then O is on /.
Since AOPQ is an isosceles triangle, P and Q are two

points symmetrical about / on CR.

So
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RP =(CQ and RQ =CP. @
By @, @,

1 4
S(ARQLy 2 “RQ-QL-sin ZRQL

S(ARPK) % « RP » PK » sin ZRPK

_RQ QL _CP CQ_,

" RP PK €CQ CP

Hence the two triangles have the same area.

@D Let a and b be positive integers. Show that if 4ab — 1
divides (4a® —1)?, thena = b.
Proof Call (a, ) a “bad pair” if it satisfies 4ab —1 | (4a* —1)?
whilea # b. We use the method of infinite descent to prove
there is no such “bad pair”.
Property 1 If (a, b) is a “bad pair” and a < b, there
exists an integer ¢ (¢ <a) such that (a, c)is also a “bad pair”.

o, S —1)*
In fact, letr = 7 W then

r=—rs+(—1) =—(4a®> —1)> =—1 (mod 4a).

Therefore there exists an integer ¢ such that » = 4ac — 1.

Since a < b, we have

So ¢ <a and4ac —1 | (4a®> —1)%. Thus (a, ¢) is a “bad pair” too.
Property 2 If (a, b) is a “bad pair”, so is (b, a).
In fact, by

1 =12 = (4ab)*(mod (4ab — 1)),

we get
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(46% —1)% = (4b% — (4ab)?)* = 16b*(4a® —1)*
= 0(mod (4ab —1)).

Thus 4ab — 1 | (46% —1)2.

In the following we will show that such “bad pair” does not
exist. We shall prove by contradiction.

Suppose there is at least one “bad pair”, we choose such
pair for which 2a +4 is minimum.

If @ < b, by property 1, there is a “bad pair” (a, ¢) which
satisfiesc << b, and 2a +c¢ < 2a +b, a contradiction.

If b» <a, by property 2, (b, a) is also a “bad pair”, which
leads to 26 +a << 2a +b, a contradiction.

Hence such “bad pair” does not exist. Thereforea = b.

@» Let 2 be a positive integer. Consider

S = {(I9 Vs -"J):I! Vs Z (S {{)$ 1, =y ??}!
z+y+z>0},

aset of (n + 1)° — 1 points in three-dimensional space.
Determine the smallest possible number of planes, the
union of which contains S but does not include (0, 0, 0).
Solution The answer is: we need at least 3n planes.
It is easy to see that 3n planes satisfy the given conditions.
For example, x =i, y =iandz =: ( =1, 2, -*-, n). Another
exampleisx +y +z =% (¢ =1, 2, ==, 3n).
Now we prove that 3z is the extreme value. The following
lemma is the key to the proof.
Lemma 1 Let P (x4 ***y x) be a non-zero polynomial in
n variables. If every n-tuple (xiy *, x:), satisfying
Zyy s xp € {041, ==y, n}aswell asxy +x2 +++x, >0, 15

the zero point of the polynomial , and P (0, 0, ===, 0) 50, then
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deg P = kn.

Now we prove Lemma 1.

We apply induction on £.

For k = 0, since P # 0, the lemma is surely true.

Assuming that the lemma holds for 2 — 1, we prove that it
also holds for %.

Denote y = z;, let R(x,, ***y z4-1+» y) be the remainder
when P is divided by Q(y) = y(y —1)(y —2)=-(y —n).

Since Q(y) = y(y —1)(y —2)+«(y —n) hasn + 1 zeroes,
namely y =0, 1, ==+, n. This yields

P(I” e Th—s y) =R(I19 e Tpe y)

forallz,, **=y 24» ¥y € {0, 1, *=+, n}. This means R satisfies
the hypothesis of the lemma, what is more, deg,R <<n. Also it
is obvious that deg R << deg P. So we only need to show that
deg R = nk.

Now, rewrite R in descending powers of y:

R(Iir "ty T y)
=R?’I(I] » "ty I;z—-i)y" +Ru---l (-1'1 » "ty Ik—-l).)’""] A
+RU(I| § "y Ik—l).

In what follows, we prove that R, (x;, ***, x4 ) satisfies
the induction hypothesis.

In fact, consider the polynomial T(y) = R(0, =+, 0, y).
It is easy to see that deg T(y) < n, and T (y) has n roots:
y =1, =, n

On the other hand, since T(0) # 0 then T(y) # 0. So
deg T(y) =nandR, (0, =+, 0) #0. (In the case of &k = 1, the
coefficient R, is non-zero.)

For each fixeda,, ***, a4y € {0, 1, **», n} anda, + - +
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az- > 0, the polynomial R (a,, ***, az-1» y) obtained from
R(xy, *=5 x4-1, y) by substituting the value of x; = a; has
n + 1 roots while deg R <<n. Hence it is a zero polynomial, and
R.(ays **5 @zy) =0 G = 0, 1, =+, n). In particular,
R,(ayy **+y apy) =0.
By the induction hypothesis, deg R, = (¢ —1)n. So
deg R =deg R, +n = kn,

This completes the induction and the proof of Lemma 1.
Assume the union of N planes contains S but does not
include (0, 0, 0), let these N planes be

a;x +b;y +c;z +d; =0,

Consider polynomial

N
P(-I'l M 2) e H(QI'I +b,y +C,‘2 +d,‘).

i=1
The degree of it is N.
For any (x4, yos z0) € S, P(xgy oy 2¢) = 0, but
P(0, 0, 0) # 0. By lemma, we get N = deg P = 3n.
Remark This problem belongs to real algebraic geometry,

it is noteworthy.

2008

First Day
0900 - 1330 July 16,2008

@ An acute triangle ABC has orthocenter H. The circle
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through H with center the
midpoint of BC intersects the line
BC at A, and A,. Similarly, the
circle passing through H with

center the midpoint of CA

intersects the line CA at B, and
B,, and the circle passing through H with center the
midpoint of AB intersects the line AB at C,; and C,.
Show that A,, A,, B, B,, C,, C, are concyclic.
Proof | Let B,, C, the midpoints of CA, ABrespectively.
Denote A’ as the other intersection of the circle centered at B,
which passes through H and the circle centered at C, which
passes through H. We know that A'H | C,B,. Since By, C,
are the midpoints of CA, AB respectively, B,C, 4/ BC.
Therefore A’'H | BC. This yields that A’ lies on the segment
AH.

By the Secant — Secant theorem, it follows that
AC, « AC, =AA’ « AH = AB, + AB,,

So By, B;, C,, C; are concyclic.

Let the intersection of the perpendicular bisectors of B, B, ,
C,C, be O. Then O is the circumcenter of quadrilateral
B:B,C,C,, as well as the circumcenter of AABC. So

OB1 =OB;; =OC| =OC2
Similarly,
OA| =OA3 — OB| = OB;.
Therefore, six points A,, A,, By, B;, C,, C, are all on the

same circle, whose center is O, and radius OA;.

Proof T Let O be the circumcenter of triangle ABC, and D,
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E, F the midpoints of BC, CA, AB respectively. BH
intersects DF at point P, then BH | DF. By Pythagoras’

theorem, we have

BF*—FH?* = BP? —PH?* = BD*—DH?, @

BO?* —A,0* = BD? —A,D? = BD* — DH*>. @
Similarly,

BO? —C,0? = BF? —FH?, ©)

By @, @, @, A;0 = C,0. It is obvious that A,O = A,O,
C,0 = C,0, thus

A0 =A,0=C,0=C,0,.
Similarly,

A0 = A,0 = B,0 = B,0.

Therefore, six points A,, A,.

B,, B,, C,, C, are all on the same

circle, whose center is O.

@» (1) Prove that

2
& y 2?2

TP  y—1F Gz —17

=1,

for all real numbers =, y, 2, each different from 1,
and satisfying zyvz = 1.
(2) Prove that the equality holds for infinitely many
triples of rational numbers x, y, z, each different
from 1, and satisfying zyz = 1.
Proof I (1) Let




184 Mathematical Olympiad in China

then

Since xyz = 1, we have
abc = (a — 1B —1)(c —1),
that is

a+b+c—1=ab+bc +ca.
Therefore

a* +6*+c¢? =(a +b6+c)* —20ab +bc +ca)
=(a+b+c)?—2(a+b+c—1)
=(a+b+c—12+1

=1,
So
xt ¥’ z?
>
O R — R —
. _ﬂki — 2 k__j ~
(2)Takc(;c,y,z)—( (k—l)z’k k?, P ),kls

an integer, then (x, y, z) is a triple of rational numbers, with
xr, vy, z each different from 1. What is more, a different

integer & gives a different triple of rational numbers.

:rz yz z2
e —0F  p—1% e—17

B B2 (B —h2)? h —1)°
-kt kD R+

o B0 R0k Y
(k? —k +1)?

1,

So the problem is proved.
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Proof | (1) Byzyz =1,letp =z, q =1, r = %, then

r="—,y=",z2=— =§, where p, g, r are different from

each other. We have

2
z? y 22

=
(3:—”1)24_(31—1)24_(&:—1)2 1

N i 4 ¢ B G @
(p—g)  Llg—ry " —p)

Let

in G _ g . IF

a=———:0b c = ’

I = T

after the substitution, (O reduces to Zaz = 1. Since

=ld 0 —L4d ¥ AR B
a p’ b g c r
therefore
—1+a_—1+b.—1+c=1
a b ¢ ?
1—Dja+Dlab =0. @)
By @, we get

1—Ea2 =—(a+b+c—1)?° <0,

so > a> = 1. Hence @ holds.

2+t _ t+1

2 - = =
B I = s e ™ P e ®

, here ¢

—— b

b+ec
can be any rational number except 0 and — 1. While ¢ varies,
only finitely many of ¢ values can make &, ¢, a be 1. That is,

there are infinitely many triples of rational numbers a, b, ¢
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each different from 1, satisfying > a = > a> = 1. By

a b c)'

(I'y’Z)z(a—1'b—l'c—1

(2) holds.

@D Prove that there are infinitely many positive integers n

such that »? + 1 has a prime divisor greater than
2n + /2n.
Proof | Take any integer m (m = 20), p is a prime divisor
of (m!)*> +1, then p > m = 20. Take a integer » such that

0<n <£ andn =tm! (mod p). Therefore) <n <p —n <p

2
and
n?> =—1 (mod p). @

Now
(p —2n)* = p> —4pn +4n* =—4 (mod p),

which yields (p —2r)* = p — 4,

p=2n+Vp -4
>on++/2n+vp-4-4
>2n+2n. )

By virtue of O and @, we are done.
Proof [I First, if a prime » =1 (mod 4), then (_?1) =1,

i.e. there exists an integer n € {1, 2, ===, p — 1} such that
n* = —1 (mod p). Obviously, for this n,

(p —n)? =n?=—1 (mod p)

. = : :
and min {n, p —n} < pT Therefore, there exists an integer



International Mathematical Olympiad 187

f(P) € (1, 2, =, pT_Al

such that f2(p) =—1 (mod p).
Next, we will show that if p is sufficiently large (p =29),
n = f(p) satisfies

2n + /21 < p. (©)

Suppose for some p = 29, the above assumption is
false. Then

2n+2n = p (1 +24/2n)* >4p +1

‘:}n}lp—l_x/{a—i— —3.
2 4
Let ¢ =pT_1—n € Z, then 0 < ¢ QW.

Furthermore,

0=n?41= (‘*”—”—r)2 +1

2
e
=¢ StF =L 1)+ 1
E3p4+5 +¢* +t (mod p),

because 4| p — 5, so

pr—=2p+1 3p+1
4 4

g B it i 5.

Therefore

b2+t +3p +5.

Together with
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0<t g—”‘ip:‘l_:j,
we get
0 <2 Ly 4222
4
<(,/—4p +1i —3)3+J4p+ —3 . 3p+5
— 4 4 4
8p +9—V4p +1
= 3 < p.

It leads to a contradiction!

So the conclusion @ holds for sufficiently large prime p,
p =1 (mod 4).

Finally, it remains to show that there are infinitely many
of such f(p). In fact,

PP H1=>f(p) > V/p —1,

when p — o, f(p) — o. Therefore, f (p) can take on
infinitely many values.
As to the original problem, take n = f(p), p is the

corresponding prime divisor.

Second Day
0900 - 1330 July 17,2008

@» Find all functions f: (0, + ) — (0, + =) (f is a function
mapping positive real numbers to positive real numbers)
such that

(flw))?* +(f(x))? S Lk
f?) +f(z?») y? 422
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for all positive real numbers w, x, y, =z satisfying

wr = yz.
Solution Take
w=x=y=2=1,
then we get (f(1))? = f(1),s0 f(1) =1,
=2z =t,

For any real number ¢ >0, let w

we get
SN +1 2 +1

2f(t) 2t
f@) — D@ —) =0.

which implies
So, for any:z >0,
f) =t or f(r.)=%. @

Suppose there exist b, ¢ € (0, + o) such that f(b) # b,
(o) #L. By D, we get b, ¢ different from 1 and £(5) =

fle) =c.
Takew =b, x =c, y =2 = v/bc, then

1
+ 2
; e

bz
2f(be) 2be

*

! = o+
i.e. f(be) B+

By @, f(bc) = be or fbc) ic If f(bc) = be, then

§ps BEBEET
b(b* +c2)’

which yieldsb*c = ¢, 6 = 1. Contradiction!
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N =1
If f(be) B then

1 ¢ +b%

be b +c?)’

that yields b°c* = b, ¢ = 1. Contradiction!

Therefore, only two functions: f(x) =z, x € (0, + )

or f(zx) = %, x € (0, + o), It is easy to verify that these two

functions satisfy the given conditions.

@D Let n and £ be positive integers with 2 =n and £ —n an

even number. Let 2n» lamps labelled 1, 2, -+, 2n be
given, each of which can be either on or off. Initially all
the lamps are off. We consider sequences of steps: at each
step one of the lamps is switched from on to off or from
off to on.

Let N be the number of such sequences consisting of £
steps and resulting in the state where lamps 1 through »
are all on, and lamps n + 1 through 2n are all off.

Let M be the number of such sequences consisting of %
steps, resulting in the state where lamps 1 through » are
all on, and lamps n + 1 through 2» are all off, but where

none of the lamps» + 1 through 2n is ever switched on.

. )
Determine the ratio M

Solution The ratio is 2" .

Lemma For any positive integer t, call a t-element array

(a19 Aas """y a,) uhi-fh CONSiSts Of‘ ()p 1 (a1 s oy """y 4, (= {Ug 1})

5 2 i =1
“good” if there are odd “0’s in it. Prove that there are 2'

13
good” arrays.
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Proof: In fact, for the same a,, a»» ***» a,» whena,is0Oor 1,
the parity of Os in these two arrays is different, so only one of
the arrays is “good”. There are 2' array in all, we can match
one array to the other, there are only a, of them are different.
Only one of these two arrays is “good”. So of all the possible
arrays, only half of them are “good”. The lemma is proved.

Let A be the set of such sequences consisting of £ steps and
resulting in the state where lamps 1 through » are all on, and
lamps » + 1 through 2» are all off.

Let B the set of such sequences consisting of & steps,
resulting in the state where lamps 1 through » are all on, and
lampsn + 1 through 2n are all off, but where none of the lamps
n + 1 through 2»n is ever switched on.

For any & in B, match all a in A to b if “a’s elements are
the same as 4’s (mod n)” (For example, taken =2, k = 4, if
b =(2, 2,2, 1), then it could correspond toa = (4, 4, 2, 1),
a =1(2,2,2, 1)y a =(2, 4, 4, Detc). Since b in B, the number
of 1, 2, *=», n must be odd; @ in A, the number of 1, 2, =, n of
must be odd, and the number of n + 1, +-, 2n must be even.

For anyi € {1, 2, ***, n}, if number of *Z’s in & is b;,
then a only need to satisfy.: for the positions taken by 7 in & the
corresponding positions taken by i orn +7 in @, and the number
of ‘77 sis odd (thus the number of n +: is even). By lemma and

the product principle, there are [[2%7 = 27 ‘a7 s
i=1

corresponding to b, but only one of b (letting every position of
a be the remainder when divided by n) in B corresponds to each
ainA.

Therefore | A |=2" | B |, i.e. N = 2¢"M.

Obviously M # 0 (because the sequence (1, 2, -+, n,
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Ma "% n) eB); S0

= 2k,

<=z

@» Let ABCD be a convex quadrilateral with | BA | | BC |.
Denote the incircles of triangles ABC and ADC by w, and
w, respectively. Suppose that there exists a circle w
tangent to ray BA extended beyond A and to the ray BC
extended beyond C, which is also tangent to the lines AD
and CD .
Prove that the common external tangents to w;and w,
intersects at a point on w.
Proof Lemma 1 Let ABCD be a convex
quadrilateral » a circle w tangent to ray BA
extended beyond A and to the ray BC
extended beyond C (as shown in Fig, 1),
which is also tangent to the lines AD and CD.
Then AB +AD = CB +CD.
Now we prove the Lemma 1.
Let w meet AB, BC, CD, DA at P, Q,
R, S respectively. As shown in Fig.1,

Fig. 1

AB +AD =CB +CD
©AB + (AD +DS) = CB +(CD +DR)
©AB +AS =CB +CR
&AB +AP =CB +CR
&BP = BR.

This ends the proof of Lemma 1.
Lemma 2 If the radii of three circles ©0,, ®0,, ®0;

dif fer from each other, then their the homothetic centers are



International Mathematical Olympiad 193

collinear.

Now we prove Lemma 2.

Let X, be the homothetic center of ©®0O, and ®0,, X, be
the homothetic center of ®O,; and ®O;, and X, be the
homothetic center of ©®0, and ©O0;, r; be the radius OO,
(i =1, 2, 3). By the property of homothetic

0,X; . rd
X302 ?'2'

Here O, X; denotes the directed

segment O,X;, as shown in

Fig.2. Similarly,

So

0,X; . 0,X, . 0:X, _ (_ﬁ)(_ﬁ)(_ﬁ):_1
X302 X103 Xzol ra rs ry :
By Menelaus Theorem, X, X,, X, are collinear.
Let w,» ws meet AC at U, V respectively. As shown in
Fig.3,

Ay — AD +AC—CD _ AC , AD —CD
2 2 2
_AC ,CB—AB _ AC +CB —AB
2 2 2

= CU.

Hence the excircle o of AABC on the
side AC meet AC at V. Therefore w,» w3

meet at point V, i.e. V is the homothetic

center of w», ws. Denote the homothetic Fig.3
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centres of w;» w, by K (i.e. K is the intersection of two
external common tangents to w», w3), by Lemma 2, K, V, B
are collinear.

Similarly, K, D, U are collinear.

Since BA # BC, thenU # V (Otherwise, by AV = CU, we
knowU = V is the midpoint of side AC. It is contradictory
to BA #BC ). So BV does not coincide with DU, i. e.
K =BV N DU.

We now prove that K is on the circle w.

Construct a tangent [ of w which is parallel to AC. Let [
meet w at T. We will show that B, V, T are collinear.

As shown in Fig. 4, [ intersects BA, BC at A,, C,
respectively, then o is the excircle of ABA,C, on the side
A,C,, meet A,C, at T, meanwhile w; is the
excircle of AABC on the side AC, meet AC
at V. Since AC // A,C,, B is the homothetic
center of ABAC and ABA,C,, Vand T are
corresponding points, so B, V, T are
collinear.

Similarly, D, V, T are collinear. This

means K = T,

Fig.4

This ends the proof.
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